scholarly journals Privacy-Preserving Trajectory Data Publishing by Dynamic Anonymization with Bounded Distortion

2021 ◽  
Vol 10 (2) ◽  
pp. 78
Author(s):  
Songyuan Li ◽  
Hui Tian ◽  
Hong Shen ◽  
Yingpeng Sang

Publication of trajectory data that contain rich information of vehicles in the dimensions of time and space (location) enables online monitoring and supervision of vehicles in motion and offline traffic analysis for various management tasks. However, it also provides security holes for privacy breaches as exposing individual’s privacy information to public may results in attacks threatening individual’s safety. Therefore, increased attention has been made recently on the privacy protection of trajectory data publishing. However, existing methods, such as generalization via anonymization and suppression via randomization, achieve protection by modifying the original trajectory to form a publishable trajectory, which results in significant data distortion and hence a low data utility. In this work, we propose a trajectory privacy-preserving method called dynamic anonymization with bounded distortion. In our method, individual trajectories in the original trajectory set are mixed in a localized manner to form synthetic trajectory data set with a bounded distortion for publishing, which can protect the privacy of location information associated with individuals in the trajectory data set and ensure a guaranteed utility of the published data both individually and collectively. Through experiments conducted on real trajectory data of Guangzhou City Taxi statistics, we evaluate the performance of our proposed method and compare it with the existing mainstream methods in terms of privacy preservation against attacks and trajectory data utilization. The results show that our proposed method achieves better performance on data utilization than the existing methods using globally static anonymization, without trading off the data security against attacks.

Author(s):  
Alexandre Evfimievski ◽  
Tyrone Grandison

Privacy-preserving data mining (PPDM) refers to the area of data mining that seeks to safeguard sensitive information from unsolicited or unsanctioned disclosure. Most traditional data mining techniques analyze and model the data set statistically, in aggregated form, while privacy preservation is primarily concerned with protecting against disclosure of individual data records. This domain separation points to the technical feasibility of PPDM. Historically, issues related to PPDM were first studied by the national statistical agencies interested in collecting private social and economical data, such as census and tax records, and making it available for analysis by public servants, companies, and researchers. Building accurate socioeconomical models is vital for business planning and public policy. Yet, there is no way of knowing in advance what models may be needed, nor is it feasible for the statistical agency to perform all data processing for everyone, playing the role of a trusted third party. Instead, the agency provides the data in a sanitized form that allows statistical processing and protects the privacy of individual records, solving a problem known as privacypreserving data publishing. For a survey of work in statistical databases, see Adam and Wortmann (1989) and Willenborg and de Waal (2001).


2021 ◽  
Vol 11 (12) ◽  
pp. 3164-3173
Author(s):  
R. Indhumathi ◽  
S. Sathiya Devi

Data sharing is essential in present biomedical research. A large quantity of medical information is gathered and for different objectives of analysis and study. Because of its large collection, anonymity is essential. Thus, it is quite important to preserve privacy and prevent leakage of sensitive information of patients. Most of the Anonymization methods such as generalisation, suppression and perturbation are proposed to overcome the information leak which degrades the utility of the collected data. During data sanitization, the utility is automatically diminished. Privacy Preserving Data Publishing faces the main drawback of maintaining tradeoff between privacy and data utility. To address this issue, an efficient algorithm called Anonymization based on Improved Bucketization (AIB) is proposed, which increases the utility of published data while maintaining privacy. The Bucketization technique is used in this paper with the intervention of the clustering method. The proposed work is divided into three stages: (i) Vertical and Horizontal partitioning (ii) Assigning Sensitive index to attributes in the cluster (iii) Verifying each cluster against privacy threshold (iv) Examining for privacy breach in Quasi Identifier (QI). To increase the utility of published data, the threshold value is determined based on the distribution of elements in each attribute, and the anonymization method is applied only to the specific QI element. As a result, the data utility has been improved. Finally, the evaluation results validated the design of paper and demonstrated that our design is effective in improving data utility.


2017 ◽  
Vol 26 (2) ◽  
pp. 285-291 ◽  
Author(s):  
Qiwei Lu ◽  
Caimei Wang ◽  
Yan Xiong ◽  
Huihua Xia ◽  
Wenchao Huang ◽  
...  

2019 ◽  
pp. 1518-1538
Author(s):  
Sowmyarani C. N. ◽  
Dayananda P.

Privacy attack on individual records has great concern in privacy preserving data publishing. When an intruder who is interested to know the private information of particular person of his interest, will acquire background knowledge about the person. This background knowledge may be gained though publicly available information such as Voter's id or through social networks. Combining this background information with published data; intruder may get the private information causing a privacy attack of that person. There are many privacy attack models. Most popular attack models are discussed in this chapter. The study of these attack models plays a significant role towards the invention of robust Privacy preserving models.


Author(s):  
Ashoka Kukkuvada ◽  
Poornima Basavaraju

Currently the industry is focused on managing, retrieving, and securing massive amounts of data. Hence, privacy preservation is a significant concern for those organizations that publish/share personal data for vernacular analysis. In this chapter, the authors presented an innovative approach that makes use of information gain of the quasi attributes with respect to sensitive attributes for anonymizing the data, which gives the fruitfulness of an attribute in classifying the data elements, which is a two-way correlation among attributes. The authors show that the proposed approach preserves better data utility and has lesser complexity than former methods.


Author(s):  
Nancy Victor ◽  
Daphne Lopez

Data privacy plays a noteworthy part in today's digital world where information is gathered at exceptional rates from different sources. Privacy preserving data publishing refers to the process of publishing personal data without questioning the privacy of individuals in any manner. A variety of approaches have been devised to forfend consumer privacy by applying traditional anonymization mechanisms. But these mechanisms are not well suited for Big Data, as the data which is generated nowadays is not just structured in manner. The data which is generated at very high velocities from various sources includes unstructured and semi-structured information, and thus becomes very difficult to process using traditional mechanisms. This chapter focuses on the various challenges with Big Data, PPDM and PPDP techniques for Big Data and how well it can be scaled for processing both historical and real-time data together using Lambda architecture. A distributed framework for privacy preservation in Big Data by combining Natural language processing techniques is also proposed in this chapter.


2020 ◽  
Vol 17 (9) ◽  
pp. 4623-4626
Author(s):  
Nisha Nehra ◽  
Suneet Kumar

Now days, due to the sheer amount of data, its complexity and the rate at which it is generated, traditional algorithms that are present so far for the privacy preservation of relation data publishing are not capable enough to ensure privacy as efficiently for transactional data also. From last two decades the interest also increases to provide better data preserving schemes for data publishing. There are a number of algorithms, schemes, models and techniques in the literature that ensure privacy against identity disclosure and attribute disclosure attacks. This paper is a comprehensive survey of the past work done in the field of anonymization to provide privacy against transactional data publishing.


Sign in / Sign up

Export Citation Format

Share Document