scholarly journals A Variant of the Planchon and Darboux Algorithm for Filling Depressions in Raster Digital Elevation Models

2019 ◽  
Vol 8 (4) ◽  
pp. 164
Author(s):  
Hongqiang Wei ◽  
Guiyun Zhou ◽  
Wenyan Dong

Depression (pit or sink) filling is a key preprocessing step for the automatic hydrologic analysis of surface topography. The Planchon and Darboux (P&D) algorithm is a widely used depression filling algorithm. In this study, we propose an improved variant over the fastest sequential variant of the P&D algorithm for depression filling. Our variant introduces two important improvements compared with the fastest variant of the P&D algorithm, and greatly reduces redundant computation, as well as requires less memory space. Our algorithm can be easily integrated into many of the existing hydrologic analysis software packages. Moreover, our algorithm shares the same versatility as the P&D algorithm. Depressions can be replaced with surfaces either strictly horizontal, or slightly sloping. In the latter case, it is easier to calculate the flow direction matrix.

2003 ◽  
Vol 47 ◽  
pp. 241-246
Author(s):  
Roshan SHRESTHA ◽  
Yasuto TACHIKAWA ◽  
Kaoru TAKARA

2021 ◽  
Vol 10 (3) ◽  
pp. 198-206
Author(s):  
Ugbelase Vincent Nwacholundu ◽  
Igbokwe Joel Izuchukwu ◽  
Emengini Josephine Ebele ◽  
Ejikeme Joseph Onyedika ◽  
Igbokwe Esomchukwu Chinagorom

Terrain analysis is the quantitative analysis of topographic surfaces. The purpose of a digital terrain system is to provide the digital representation of terrain so that environmental problem like soil erosion may be approached accurately and efficiently through automated means. Traditionally this was (and still is!) being done manually by using topographic/contour maps. With the availability of Digital Elevation Models (DEM) and GIS tools, watershed properties can be extracted by using automated procedures. Remote Sensing and Digital elevation models (DEMs) are known to be very useful data sources for the automated delineation of flow paths, sub watersheds and flow networks for hydrologic modelling and watershed characterization. The digital terrain model was extracted from a 90m resolution Shuttle Radar Topographic Mission (SRTM) of the study area. The SRTM data was corrected by removing voids, striping, tree offsets and random noise. The SRTM DEM data was projected from geographic coordinate WGS 84 to UTM zone 32 of the study area. The 3-D analysis tool of the ArcGIS 10.1 was used for this process. The DEM was processed to obtain the Slope, Contour, Flow direction, Flow accumulation, Flow length, Stream power Index of the study area. The study proved that SRTM elevation dataset has the ability to obviate the lack of terrain data for hydrologic modelling using ArcGIS where appropriate data for terrain modelling and simulation of hydrological processes is unavailable.


2011 ◽  
Vol 64 (11) ◽  
pp. 2316-2324 ◽  
Author(s):  
Kun Hou ◽  
Wei Yang ◽  
Jigui Sun ◽  
Tieli Sun

Depression filling and direction assignment over flat areas are critical issues in hydrologic analysis. This paper proposes a method to handle depressions and flat areas in one procedure. Being different from the traditional raster neighbourhoods processing with little heuristic information, the method is designed to compensate for the inadequate searching information of other methods. The proposed method routes flow through depressions and flat areas by searching for the outlet using the heuristic information. Heuristic information can reveal the general trend slope of the DEM (digital elevation models) and help the proposed method find the outlet accurately. The method is implemented in Pascal and experiments are carried out on actual DEM data. It can be seen from the comparison with the four existing methods that the proposed method can get a closer match result with the ground truth network. Moreover, the proposed method can avoid the generation of the unrealistic parallel drainage lines, unreal drainage lines and spurious terrain features.


10.1596/34445 ◽  
2020 ◽  
Author(s):  
Louise Croneborg ◽  
Keiko Saito ◽  
Michel Matera ◽  
Don McKeown ◽  
Jan van Aardt

Sign in / Sign up

Export Citation Format

Share Document