scholarly journals Chondrocyte Culture Parameters for Matrix-Assisted Autologous Chondrocyte Implantation Affect Catabolism and Inflammation in a Rabbit Model

2019 ◽  
Vol 20 (7) ◽  
pp. 1545 ◽  
Author(s):  
Martin Sauerschnig ◽  
Markus Berninger ◽  
Theresa Kaltenhauser ◽  
Michael Plecko ◽  
Gabriele Wexel ◽  
...  

Cartilage defects represent an increasing pathology among active individuals that affects the ability to contribute to sports and daily life. Cell therapy, such as autologous chondrocyte implantation (ACI), is a widespread option to treat larger cartilage defects still lacking standardization of in vitro cell culture parameters. We hypothesize that mRNA expression of cytokines and proteases before and after ACI is influenced by in vitro parameters: cell-passage, cell-density and membrane-holding time. Knee joint articular chondrocytes, harvested from rabbits (n = 60), were cultured/processed under varying conditions: after three different cell-passages (P1, P3, and P5), cells were seeded on 3D collagen matrices (approximately 25 mm3) at three different densities (2 × 105/matrix, 1 × 106/matrix, and 3 × 106/matrix) combined with two different membrane-holding times (5 h and two weeks) prior autologous transplantation. Those combinations resulted in 18 different in vivo experimental groups. Two defects/knee/animal were created in the trochlear groove (defect dimension: ∅ 4 mm × 2 mm). Four identical cell-seeded matrices (CSM) were assembled and grouped in two pairs: One pair giving pre-operative in vitro data (CSM-i), the other pair was implanted in vivo and harvested 12 weeks post-implantation (CSM-e). CSMs were analyzed for TNF-α, IL-1β, MMP-1, and MMP-3 via qPCR. CSM-i showed higher expression of IL-1β, MMP-1, and MMP-3 compared to CSM-e. TNF-α expression was higher in CSM-e. Linearity between CSM-i and CSM-e values was found, except for TNF-α. IL-1β expression was higher in CSM-i at higher passage and longer membrane-holding time. IL-1β expression decreased with prolonged membrane-holding time in CSM-e. For TNF-α, the reverse was true. Lower cell-passages and lower membrane-holding time resulted in stronger TNF-α expression. Prolonged membrane-holding time resulted in increased MMP levels among CSM-i and CSM-e. Cellular density was of no significant effect. We demonstrated cytokine and MMP expression levels to be directly influenced by in vitro culture settings in ACI. Linearity of expression-patterns between CSM-i and CSM-e may predict ACI regeneration outcome in vivo. Cytokine/protease interaction within the regenerate tissue could be guided via adjusting in vitro culture parameters, of which membrane-holding time resulted the most relevant one.

2019 ◽  
Vol 7 (7) ◽  
pp. 232596711985444 ◽  
Author(s):  
Philipp Niemeyer ◽  
Volker Laute ◽  
Wolfgang Zinser ◽  
Christoph Becher ◽  
Thomas Kolombe ◽  
...  

Background:Autologous chondrocyte implantation (ACI) and microfracture are established treatments for large, full-thickness cartilage defects, but there is still a need to expand the clinical and health economic knowledge of these procedures.Purpose:To confirm the noninferiority of ACI compared with microfracture.Study Design:Randomized controlled trial; Level of evidence, 2.Methods:Patients were randomized to be treated with matrix-associated ACI using spheroid technology (n = 52) or microfracture (n = 50). Both procedures followed standard methods. Patients were assessed by the Knee injury and Osteoarthritis Outcome Score (KOOS), MOCART (magnetic resonance observation of cartilage repair tissue) scoring system, Bern score, modified Lysholm score, International Cartilage Repair Society (ICRS) rating (histological and immunochemical scoring after rebiopsy 24 months after implantation), and International Knee Documentation Committee (IKDC) examination form. The main assessments were conducted 24 months after study treatment.Results:In the primary intention-to-treat analysis, the overall KOOS score for both ACI and microfracture yielded a statistically significant improvement relative to baseline. According to the between-group analysis, ACI passed the test of noninferiority compared with microfracture; thus, the primary goal of the study was achieved. The KOOS subscores yielded the same qualitative results as the overall KOOS score (ie, for each of these, noninferiority was demonstrated), and in 1 case (Activities of Daily Living subscore), the threshold for superiority was passed. The subgroup analyses did not yield any clear evidence of an association between treatment effect and any of the categories investigated (age, diagnosis, defect localization, sex). A histological analysis of biopsies from 16 patients (ACI: n = 9; microfracture: n = 7) suggested a better quality of repair in the patients treated with ACI.Conclusion:The efficacy of both ACI and microfracture was demonstrated with respect to both functional outcomes and morphological repair. The primary analysis confirmed the statistical hypothesis of the noninferiority of ACI, even for relatively small cartilage defects (1-4 cm2) treated in this study, the indication for which microfracture is generally accepted as the standard of care. ACI showed significant superiority in the KOOS subscores of Activities of Daily Living at 24 months and Knee-related Quality of Life at 12 months.Registration:NCT01222559 ( ClinicalTrials.gov identifier).


Sign in / Sign up

Export Citation Format

Share Document