scholarly journals Diverse Actions of Astrocytes in GABAergic Signaling

2019 ◽  
Vol 20 (12) ◽  
pp. 2964 ◽  
Author(s):  
Masaru Ishibashi ◽  
Kiyoshi Egawa ◽  
Atsuo Fukuda

An imbalance of excitatory and inhibitory neurotransmission leading to over excitation plays a crucial role in generating seizures, while enhancing GABAergic mechanisms are critical in terminating seizures. In recent years, it has been reported in many studies that astrocytes are deeply involved in synaptic transmission. Astrocytes form a critical component of the “tripartite” synapses by wrapping around the pre- and post-synaptic elements. From this location, astrocytes are known to greatly influence the dynamics of ions and transmitters in the synaptic cleft. Despite recent extensive research on excitatory tripartite synapses, inhibitory tripartite synapses have received less attention, even though they influence inhibitory synaptic transmission by affecting chloride and GABA concentration dynamics. In this review, we will discuss the diverse actions of astrocytic chloride and GABA homeostasis at GABAergic tripartite synapses. We will then consider the pathophysiological impacts of disturbed GABA homeostasis at the tripartite synapse.

2016 ◽  
Vol 86 ◽  
pp. 109-120 ◽  
Author(s):  
Marco Fuenzalida ◽  
Claudia Espinoza ◽  
Miguel Ángel Pérez ◽  
Cheril Tapia-Rojas ◽  
Loreto Cuitino ◽  
...  

Blood ◽  
2003 ◽  
Vol 102 (4) ◽  
pp. 1525-1528 ◽  
Author(s):  
Brian J. Ruscito ◽  
Neil L. Harrison

Abstract Liver failure is often accompanied by cognitive impairment and coma, a syndrome known as hepatic encephalopathy (HE). The administration of flumazenil, a benzodiazepine (BZ) antagonist, is effective in reversing the symptoms of HE in many patients. These clinical observations gave rise to notions of an endogenous BZ-like mechanism in HE, but to date no viable candidate compounds have been characterized. We show here that the hemoglobin (Hb) metabolites hemin and protoporphyrin IX (PPIX) interact with the BZ site on the γ-aminobutyric acid (GABAA) receptor and enhance inhibitory synaptic transmission in a manner similar to diazepam and zolpidem. This finding suggests that hemin and PPIX are neuroactive porphyrins capable of acting as endogenous ligands for the central BZ site. The accumulation of these porphyrins under pathophysiologic conditions provides a potentially novel mechanism for the central manifestations of HE.


1997 ◽  
Vol 78 (1) ◽  
pp. 82-91 ◽  
Author(s):  
Stefan Titz ◽  
Bernhard U. Keller

Titz, Stefan and Bernhard U. Keller. Rapidly deactivating AMPA receptors determine excitatory synaptic transmission to interneurons in the nucleus tractus solitarius from rat. J. Neurophysiol. 78: 82–91, 1997. Excitatory synaptic transmission was investigated in interneurons of the parvocellular nucleus tractus solitarius (pNTS) by performing patch-clamp experiments in thin slice preparations from rat brain stem. Stimulation of single afferent fibers evoked excitatory postsynaptic currents (EPSCs) mediated by glutamate receptors of the dl-α-amino-3-hydroxy-5-methylisoxazole-propionic acid (AMPA) and N-methyl-d-aspartate types. AMPA-receptor-mediated EPSCs displayed decay time constants of 3.5 ± 1.2 (SD) ms (13 cells), which were slow compared with EPSC decay time constants in neurons of the cerebellum or hippocampus. Slow EPSC decay was not explained by dendritic filtering, because the passive membrane properties of pNTS interneurons provided favorable voltage-clamp conditions. Also, the slowness of EPSC decay did not result from slow deactivation of AMPA receptors (0.7 ± 0.2 ms, 5 cells), which was investigated during rapid application of agonist to outside-out patches. Comparison of AMPA receptor kinetics with EPSC decay time constants suggested that the slow time course of EPSCs resulted from the prolonged presence of glutamate in the synaptic cleft.


2001 ◽  
Vol 40 (6) ◽  
pp. 806-817 ◽  
Author(s):  
Karen A Maubach ◽  
Karine Martin ◽  
David W Smith ◽  
Louise Hewson ◽  
Robert A Frankshun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document