synaptic cleft
Recently Published Documents


TOTAL DOCUMENTS

381
(FIVE YEARS 113)

H-INDEX

55
(FIVE YEARS 8)

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 255
Author(s):  
Dániel Szöllősi ◽  
Thomas Stockner

The human serotonin transporter (hSERT) removes the neurotransmitter serotonin from the synaptic cleft by reuptake into the presynaptic nerve terminal. A number of neurologic diseases are associated with dysfunction of the hSERT, and several medications for their treatment are hSERT blockers, including citalopram, fluoxetine, and paroxetine. The substrate transport is energized by the high concentration of external NaCl. We showed through molecular dynamics simulations that the binding of NaCl stabilized the hSERT in the substrate-binding competent conformation, which was characterized by an open access path to the substrate-binding site through the outer vestibule. Importantly, the binding of NaCl reduced the dynamics of the hSERT by decreasing the internal fluctuations of the bundle domain as well as the movement of the bundle domain relative to the scaffold domain. In contrast, the presence of only the bound chloride ion did not reduce the high domain mobility of the apo state.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Mansi Prakash ◽  
Jeremy Murphy ◽  
Robyn St Laurent ◽  
Nina Friedman ◽  
Emmanuel L. Crespo ◽  
...  

AbstractUnderstanding percepts, engrams and actions requires methods for selectively modulating synaptic communication between specific subsets of interconnected cells. Here, we develop an approach to control synaptically connected elements using bioluminescent light: Luciferase-generated light, originating from a presynaptic axon terminal, modulates an opsin in its postsynaptic target. Vesicular-localized luciferase is released into the synaptic cleft in response to presynaptic activity, creating a real-time Optical Synapse. Light production is under experimenter-control by introduction of the small molecule luciferin. Signal transmission across this optical synapse is temporally defined by the presence of both the luciferin and presynaptic activity. We validate synaptic Interluminescence by multi-electrode recording in cultured neurons and in mice in vivo. Interluminescence represents a powerful approach to achieve synapse-specific and activity-dependent circuit control in vivo.


2022 ◽  
Vol 23 (2) ◽  
pp. 592
Author(s):  
Brigitte Potier ◽  
Louison Lallemant ◽  
Sandrine Parrot ◽  
Aline Huguet-Lachon ◽  
Geneviève Gourdon ◽  
...  

Myotonic dystrophy type 1 (DM1) is a severe neuromuscular disease mediated by a toxic gain of function of mutant RNAs. The neuropsychological manifestations affect multiple domains of cognition and behavior, but their etiology remains elusive. Transgenic DMSXL mice carry the DM1 mutation, show behavioral abnormalities, and express low levels of GLT1, a critical regulator of glutamate concentration in the synaptic cleft. However, the impact of glutamate homeostasis on neurotransmission in DM1 remains unknown. We confirmed reduced glutamate uptake in the DMSXL hippocampus. Patch clamp recordings in hippocampal slices revealed increased amplitude of tonic glutamate currents in DMSXL CA1 pyramidal neurons and DG granule cells, likely mediated by higher levels of ambient glutamate. Unexpectedly, extracellular GABA levels and tonic current were also elevated in DMSXL mice. Finally, we found evidence of synaptic dysfunction in DMSXL mice, suggestive of abnormal short-term plasticity, illustrated by an altered LTP time course in DG and in CA1. Synaptic dysfunction was accompanied by RNA foci accumulation in localized areas of the hippocampus and by the mis-splicing of candidate genes with relevant functions in neurotransmission. Molecular and functional changes triggered by toxic RNA may induce synaptic abnormalities in restricted brain areas that favor neuronal dysfunction.


2022 ◽  
Vol 15 ◽  
Author(s):  
Peter Kovermann ◽  
Miriam Engels ◽  
Frank Müller ◽  
Christoph Fahlke

Excitatory amino acid transporters (EAATs) optimize the temporal resolution and energy demand of mammalian excitatory synapses by quickly removing glutamate from the synaptic cleft into surrounding neuronal and glial cells and ensuring low resting glutamate concentrations. In addition to secondary active glutamate transport, EAATs also function as anion channels. The channel function of these transporters is conserved in all homologs ranging from archaebacteria to mammals; however, its physiological roles are insufficiently understood. There are five human EAATs, which differ in their glutamate transport rates. Until recently the high-capacity transporters EAAT1, EAAT2, and EAAT3 were believed to conduct only negligible anion currents, with no obvious function in cell physiology. In contrast, the low-capacity glutamate transporters EAAT4 and EAAT5 are thought to regulate neuronal signaling as glutamate-gated channels. In recent years, new experimental approaches and novel animal models, together with the discovery of a human genetic disease caused by gain-of-function mutations in EAAT anion channels have enabled identification of the first physiological and pathophysiological roles of EAAT anion channels.


2021 ◽  
Author(s):  
Aravind Chenrayan Govindaraju ◽  
Imran H Quraishi ◽  
Anna Lysakowski ◽  
Ruth Anne Eatock ◽  
Robert M Raphael

Vestibular hair cells transmit information about head position and motion across synapses to primary afferent neurons. At some of these synapses, the afferent neuron envelopes the hair cell, forming an enlarged synaptic terminal referred to as a calyx. The vestibular hair cell-calyx synapse supports nonquantal transmission (NQT), a neurotransmitter-independent mechanism that is exceptionally fast. The underlying biophysical mechanisms that give rise to NQT are not fully understood. Here we present a computational model of NQT that integrates morphological and electrophysiological data. The model predicts that NQT involves two processes: changes in cleft K+ concentration, as previously recognized, and very fast changes in cleft electrical potential. A significant finding is that changes in cleft electrical potential are faster than changes in [K+] or quantal transmission. The electrical potential mechanism thus provides a basis for the exceptional speed of neurotransmission between type I hair cells and primary neurons and explains experimental observations of fast postsynaptic currents. The [K+] mechanism increases the gain of NQT. Both processes are mediated by current flow through low-voltage-activated K+ (KLV) channels located in both pre-synaptic (hair cell) and post-synaptic (calyx inner face) membranes. The model further demonstrates that the calyx morphology is necessary for NQT; as calyx height is increased, NQT increases in size, speed and efficacy at depolarizing the afferent neuron. We propose that the calyx evolved to enhance NQT and speed up signals that drive vestibular reflexes essential for stabilizing the eyes and neck and maintaining balance during rapid and complex head motions.


Author(s):  
Touhid Feghhi ◽  
Roberto X. Hernandez ◽  
Michal Stawarski ◽  
Connon I. Thomas ◽  
Naomi Kamasawa ◽  
...  

2021 ◽  
Author(s):  
Mansi Prakash ◽  
Jeremy Murphy ◽  
Robyn St Laurent ◽  
Nina Friedman ◽  
Emmanual Crespo ◽  
...  

Understanding percepts, engrams and actions requires methods for selectively modulating synaptic communication between specific subsets of interconnected cells. Here, we develop an approach to control synaptically connected elements using bioluminescent light: Luciferase-generated light, originating from a presynaptic axon terminal, modulates an opsin in its postsynaptic target. Vesicular-localized luciferase is released into the synaptic cleft in response to presynaptic activity, creating a real-time Optical Synapse. Light production is under experimenter-control by introduction of the small molecule luciferin. Signal transmission across this optical synapse is temporally defined by the presence of both the luciferin and presynaptic activity. We validate synaptic Interluminescence by multi-electrode recording in cultured neurons and in mice in vivo. Interluminescence represents a powerful approach to achieve synapse-specific and activity-dependent circuit control during behavior in vivo.


2021 ◽  
Vol 17 (10) ◽  
pp. e1009527
Author(s):  
Martijn C. Sierksma ◽  
J. Gerard G. Borst

At synapses, the pre- and postsynaptic cells get so close that currents entering the cleft do not flow exclusively along its conductance, gcl. A prominent example is found in the calyx of Held synapse in the medial nucleus of the trapezoid body (MNTB), where the presynaptic action potential can be recorded in the postsynaptic cell in the form of a prespike. Here, we developed a theoretical framework for ephaptic coupling via the synaptic cleft, and we tested its predictions using the MNTB prespike recorded in voltage-clamp. The shape of the prespike is predicted to resemble either the first or the second derivative of the inverted presynaptic action potential if cleft currents dissipate either mostly capacitively or resistively, respectively. We found that the resistive dissipation scenario provided a better description of the prespike shape. Its size is predicted to scale with the fourth power of the radius of the synapse, explaining why intracellularly recorded prespikes are uncommon in the central nervous system. We show that presynaptic calcium currents also contribute to the prespike shape. This calcium prespike resembled the first derivative of the inverted calcium current, again as predicted by the resistive dissipation scenario. Using this calcium prespike, we obtained an estimate for gcl of ~1 μS. We demonstrate that, for a circular synapse geometry, such as in conventional boutons or the immature calyx of Held, gcl is scale-invariant and only defined by extracellular resistivity, which was ~75 Ωcm, and by cleft height. During development the calyx of Held develops fenestrations. We show that these fenestrations effectively minimize the cleft potentials generated by the adult action potential, which might otherwise interfere with calcium channel opening. We thus provide a quantitative account of the dissipation of currents by the synaptic cleft, which can be readily extrapolated to conventional, bouton-like synapses.


2021 ◽  
Vol 22 (21) ◽  
pp. 11304
Author(s):  
Assunta Virtuoso ◽  
Anna Maria Colangelo ◽  
Nicola Maggio ◽  
Uri Fennig ◽  
Nitai Weinberg ◽  
...  

The spatial and temporal coordination of each element is a pivotal characteristic of systems, and the central nervous system (CNS) is not an exception. Glial elements and the vascular interface have been considered more recently, together with the extracellular matrix and the immune system. However, the knowledge of the single-element configuration is not sufficient to predict physiological or pathological long-lasting changes. Ionic currents, complex molecular cascades, genomic rearrangement, and the regional energy demand can be different even in neighboring cells of the same phenotype, and their differential expression could explain the region-specific progression of the most studied neurodegenerative diseases. We here reviewed the main nodes and edges of the system, which could be studied to develop a comprehensive knowledge of CNS plasticity from the neurovascular unit to the synaptic cleft. The future goal is to redefine the modeling of synaptic plasticity and achieve a better understanding of neurological diseases, pointing out cellular, subcellular, and molecular components that couple in specific neuroanatomical and functional regions.


2021 ◽  
Author(s):  
Matthew Chan ◽  
Erik Procko ◽  
Diwakar Shukla

The reuptake of the neurotransmitter serotonin from the synaptic cleft by the serotonin transporter, SERT, is essential for proper neurological signaling. Biochemical studies have shown Thr276 of transmembrane helix 5 is a site of PKG-mediated SERT phosphorylation, which has been proposed to shifts the SERT conformational equlibira to promote inward-facing states, thus enhancing 5HT transport. Recent structural and simulation studies have provided insights into the conformation transitions during substrate transport but have not shed light on SERT regulation via post-translational modifications. Using molecular dynamics simulations and Markov state models, we investigate how Thr276 phosphorylation impacts the SERT mechanism and its role in enhancing transporter stability and function. Our simulations show that Thr276 phosphorylation alters the hydrogen-bonding network involving residues on transmembrane helix 5. This in turn decreases the free energy barriers for SERT to transition to the inward-facing state, thus facilitating 5HT transport. The results provide atomistic insights into in vivo SERT regulation and can be extended to other pharmacologically important transporters in the solute carrier superfamily.


Sign in / Sign up

Export Citation Format

Share Document