scholarly journals Common Kinetic Mechanism of Abasic Site Recognition by Structurally Different Apurinic/Apyrimidinic Endonucleases

2021 ◽  
Vol 22 (16) ◽  
pp. 8874
Author(s):  
Alexandra A. Kuznetsova ◽  
Svetlana I. Senchurova ◽  
Alexander A. Ishchenko ◽  
Murat Saparbaev ◽  
Olga S. Fedorova ◽  
...  

Apurinic/apyrimidinic (AP) endonucleases Nfo (Escherichia coli) and APE1 (human) represent two conserved structural families of enzymes that cleave AP-site–containing DNA in base excision repair. Nfo and APE1 have completely different structures of the DNA-binding site, catalytically active amino acid residues and catalytic metal ions. Nonetheless, both enzymes induce DNA bending, AP-site backbone eversion into the active-site pocket and extrusion of the nucleotide located opposite the damage. All these stages may depend on local stability of the DNA duplex near the lesion. Here, we analysed effects of natural nucleotides located opposite a lesion on catalytic-complex formation stages and DNA cleavage efficacy. Several model DNA substrates that contain an AP-site analogue [F-site, i.e., (2R,3S)-2-(hydroxymethyl)-3-hydroxytetrahydrofuran] opposite G, A, T or C were used to monitor real-time conformational changes of the tested enzymes during interaction with DNA using changes in the enzymes’ intrinsic fluorescence intensity mainly caused by Trp fluorescence. The extrusion of the nucleotide located opposite F-site was recorded via fluorescence intensity changes of two base analogues. The catalytic rate constant slightly depended on the opposite-nucleotide nature. Thus, structurally different AP endonucleases Nfo and APE1 utilise a common strategy of damage recognition controlled by enzyme conformational transitions after initial DNA binding.

2010 ◽  
Vol 30 (13) ◽  
pp. 3206-3215 ◽  
Author(s):  
Nayun Kim ◽  
Sue Jinks-Robertson

ABSTRACT Abasic (AP) sites are potent blocks to DNA and RNA polymerases, and their repair is essential for maintaining genome integrity. Although AP sites are efficiently dealt with through the base excision repair (BER) pathway, genetic studies suggest that repair also can occur via nucleotide excision repair (NER). The involvement of NER in AP-site removal has been puzzling, however, as this pathway is thought to target only bulky lesions. Here, we examine the repair of AP sites generated when uracil is removed from a highly transcribed gene in yeast. Because uracil is incorporated instead of thymine under these conditions, the position of the resulting AP site is known. Results demonstrate that only AP sites on the transcribed strand are efficient substrates for NER, suggesting the recruitment of the NER machinery by an AP-blocked RNA polymerase. Such transcription-coupled NER of AP sites may explain previously suggested links between the BER pathway and transcription.


2020 ◽  
Vol 117 (21) ◽  
pp. 11409-11420 ◽  
Author(s):  
Shrabasti Roychoudhury ◽  
Suravi Pramanik ◽  
Hannah L. Harris ◽  
Mason Tarpley ◽  
Aniruddha Sarkar ◽  
...  

Formation of G-quadruplex (G4) DNA structures in key regulatory regions in the genome has emerged as a secondary structure-based epigenetic mechanism for regulating multiple biological processes including transcription, replication, and telomere maintenance. G4 formation (folding), stabilization, and unfolding must be regulated to coordinate G4-mediated biological functions; however, how cells regulate the spatiotemporal formation of G4 structures in the genome is largely unknown. Here, we demonstrate that endogenous oxidized guanine bases in G4 sequences and the subsequent activation of the base excision repair (BER) pathway drive the spatiotemporal formation of G4 structures in the genome. Genome-wide mapping of occurrence of Apurinic/apyrimidinic (AP) site damage, binding of BER proteins, and G4 structures revealed that oxidized base-derived AP site damage and binding of OGG1 and APE1 are predominant in G4 sequences. Loss of APE1 abrogated G4 structure formation in cells, which suggests an essential role of APE1 in regulating the formation of G4 structures in the genome. Binding of APE1 to G4 sequences promotes G4 folding, and acetylation of APE1, which enhances its residence time, stabilizes G4 structures in cells. APE1 subsequently facilitates transcription factor loading to the promoter, providing mechanistic insight into the role of APE1 in G4-mediated gene expression. Our study unravels a role of endogenous oxidized DNA bases and APE1 in controlling the formation of higher-order DNA secondary structures to regulate transcription beyond its well-established role in safeguarding the genomic integrity.


2005 ◽  
Vol 201 (4) ◽  
pp. 637-645 ◽  
Author(s):  
Teresa M. Wilson ◽  
Alexandra Vaisman ◽  
Stella A. Martomo ◽  
Patsa Sullivan ◽  
Li Lan ◽  
...  

Activation-induced cytidine deaminase deaminates cytosine to uracil (dU) in DNA, which leads to mutations at C:G basepairs in immunoglobulin genes during somatic hypermutation. The mechanism that generates mutations at A:T basepairs, however, remains unclear. It appears to require the MSH2–MSH6 mismatch repair heterodimer and DNA polymerase (pol) η, as mutations of A:T are decreased in mice and humans lacking these proteins. Here, we demonstrate that these proteins interact physically and functionally. First, we show that MSH2–MSH6 binds to a U:G mismatch but not to other DNA intermediates produced during base excision repair of dUs, including an abasic site and a deoxyribose phosphate group. Second, MSH2 binds to pol η in solution, and endogenous MSH2 associates with the pol in cell extracts. Third, MSH2–MSH6 stimulates the catalytic activity of pol η in vitro. These observations suggest that the interaction between MSH2–MSH6 and DNA pol η stimulates synthesis of mutations at bases located downstream of the initial dU lesion, including A:T pairs.


1999 ◽  
Vol 5 (S2) ◽  
pp. 1004-1005
Author(s):  
Dorothy Erie ◽  
Glenn Ratcliff ◽  
Martin Guthold ◽  
Valerie Bullock ◽  
Michelle Pliske ◽  
...  

Repair of damaged or incorrectly matched DNA is essential to the survival of all organisms. Consequently cells have devised a plentitude of pathways for repair. We have been investigating the mechanisms of mismatch repair and base excision repair. Both of these repair processes involve a large number of proteins that interact with one another as well as with DNA. Our long-term goal is to assemble complexes that are fully functional for DNA repair and to image the process of DNA repair. In addition, we wish to i) determine the stoicheometry of binding of the protein complexes to each other and to DNA, ii) monitor conformational changes due to substrate binding, iii) measure physical properties of DNA and the complexes. To accomplish this end, we have endeavored to improve techniques for solution imaging as well as those for data analysis. In this presentation I will discuss data on the stoicheometry of binding in several protein complexes and data on the physical properties of DNA.To measure the physical properties of DNA, we utilize a nanoManipulator, a modified Scanning Force Microscope with a novel, user-friendly interface that allows easy and controlled manipulation of nanometer-sized samples.


2020 ◽  
Vol 295 (40) ◽  
pp. 13902-13913
Author(s):  
Eduardo E. Laverde ◽  
Yanhao Lai ◽  
Fenfei Leng ◽  
Lata Balakrishnan ◽  
Catherine H. Freudenreich ◽  
...  

Trinucleotide repeat (TNR) expansion and deletion are responsible for over 40 neurodegenerative diseases and associated with cancer. TNRs can undergo somatic instability that is mediated by DNA damage and repair and gene transcription. Recent studies have pointed toward a role for R-loops in causing TNR expansion and deletion, and it has been shown that base excision repair (BER) can result in CAG repeat deletion from R-loops in yeast. However, it remains unknown how BER in R-loops can mediate TNR instability. In this study, using biochemical approaches, we examined BER enzymatic activities and their influence on TNR R-loops. We found that AP endonuclease 1 incised an abasic site on the nontemplate strand of a TNR R-loop, creating a double-flap intermediate containing an RNA:DNA hybrid that subsequently inhibited polymerase β (pol β) synthesis of TNRs. This stimulated flap endonuclease 1 (FEN1) cleavage of TNRs engaged in an R-loop. Moreover, we showed that FEN1 also efficiently cleaved the RNA strand, facilitating pol β loop/hairpin bypass synthesis and the resolution of TNR R-loops through BER. Consequently, this resulted in fewer TNRs synthesized by pol β than those removed by FEN1, thereby leading to repeat deletion. Our results indicate that TNR R-loops preferentially lead to repeat deletion during BER by disrupting the balance between the addition and removal of TNRs. Our discoveries open a new avenue for the treatment and prevention of repeat expansion diseases and cancer.


2015 ◽  
Vol 290 (34) ◽  
pp. 21067-21075 ◽  
Author(s):  
John M. Hinz ◽  
Peng Mao ◽  
Daniel R. McNeill ◽  
David M. Wilson

Non-coding apurinic/apyrimidinic (AP) sites are generated at high frequency in genomic DNA via spontaneous hydrolytic, damage-induced or enzyme-mediated base release. AP endonuclease 1 (APE1) is the predominant mammalian enzyme responsible for initiating removal of mutagenic and cytotoxic abasic lesions as part of the base excision repair (BER) pathway. We have examined here the ability of wild-type (WT) and a collection of variant/mutant APE1 proteins to cleave at an AP site within a nucleosome core particle. Our studies indicate that, in comparison to the WT protein and other variant/mutant enzymes, the incision activity of the tumor-associated variant R237C and the rare population variant G241R are uniquely hypersensitive to nucleosome complexes in the vicinity of the AP site. This defect appears to stem from an abnormal interaction of R237C and G241R with abasic DNA substrates, but is not simply due to a DNA binding defect, as the site-specific APE1 mutant Y128A, which displays markedly reduced AP-DNA complex stability, did not exhibit a similar hypersensitivity to nucleosome structures. Notably, this incision defect of R237C and G241R was observed on a pre-assembled DNA glycosylase·AP-DNA complex as well. Our results suggest that the BER enzyme, APE1, has acquired distinct surface residues that permit efficient processing of AP sites within the context of protein-DNA complexes independent of classic chromatin remodeling mechanisms.


Biochemistry ◽  
2010 ◽  
Vol 49 (18) ◽  
pp. 3786-3796 ◽  
Author(s):  
Eizadora Yu ◽  
Sara P. Gaucher ◽  
Masood Z. Hadi

Sign in / Sign up

Export Citation Format

Share Document