uracil dna glycosylase
Recently Published Documents


TOTAL DOCUMENTS

639
(FIVE YEARS 80)

H-INDEX

61
(FIVE YEARS 6)

Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5870
Author(s):  
Senthil Renganathan ◽  
Subrata Pramanik ◽  
Rajasekaran Ekambaram ◽  
Arne Kutzner ◽  
Pok-Son Kim ◽  
...  

Family with sequence similarity 72 A (FAM72A) is a pivotal mitosis-promoting factor that is highly expressed in various types of cancer. FAM72A interacts with the uracil-DNA glycosylase UNG2 to prevent mutagenesis by eliminating uracil from DNA molecules through cleaving the N-glycosylic bond and initiating the base excision repair pathway, thus maintaining genome integrity. In the present study, we determined a specific FAM72A-UNG2 heterodimer protein interaction using molecular docking and dynamics. In addition, through in silico screening, we identified withaferin B as a molecule that can specifically prevent the FAM72A-UNG2 interaction by blocking its cell signaling pathways. Our results provide an excellent basis for possible therapeutic approaches in the clinical treatment of cancer.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6668
Author(s):  
Inga R. Grin ◽  
Grigory V. Mechetin ◽  
Rustem D. Kasymov ◽  
Evgeniia A. Diatlova ◽  
Anna V. Yudkina ◽  
...  

Uracil–DNA glycosylases are enzymes that excise uracil bases appearing in DNA as a result of cytosine deamination or accidental dUMP incorporation from the dUTP pool. The activity of Family 1 uracil–DNA glycosylase (UNG) activity limits the efficiency of antimetabolite drugs and is essential for virulence in some bacterial and viral infections. Thus, UNG is regarded as a promising target for antitumor, antiviral, antibacterial, and antiprotozoal drugs. Most UNG inhibitors presently developed are based on the uracil base linked to various substituents, yet new pharmacophores are wanted to target a wide range of UNGs. We have conducted virtual screening of a 1,027,767-ligand library and biochemically screened the best hits for the inhibitory activity against human and vaccinia virus UNG enzymes. Although even the best inhibitors had IC50 ≥ 100 μM, they were highly enriched in a common fragment, tetrahydro-2,4,6-trioxopyrimidinylidene (PyO3). In silico, PyO3 preferably docked into the enzyme’s active site, and in kinetic experiments, the inhibition was better consistent with the competitive mechanism. The toxicity of two best inhibitors for human cells was independent of the presence of methotrexate, which is consistent with the hypothesis that dUMP in genomic DNA is less toxic for the cell than strand breaks arising from the massive removal of uracil. We conclude that PyO3 may be a novel pharmacophore with the potential for development into UNG-targeting agents.


Open Biology ◽  
2021 ◽  
Vol 11 (10) ◽  
Author(s):  
Anna Ligasová ◽  
Ivan Rosenberg ◽  
Markéta Bocková ◽  
Jiří Homola ◽  
Karel Koberna

Base excision repair is one of the important DNA repair mechanisms in cells. The fundamental role in this complex process is played by DNA glycosylases. Here, we present a novel approach for the real-time measurement of uracil DNA glycosylase activity, which employs selected oligonucleotides immobilized on the surface of magnetic nanoparticles and Förster resonance energy transfer. We also show that the approach can be performed by surface plasmon resonance sensor technology. We demonstrate that the immobilization of oligonucleotides provides much more reliable data than the free oligonucleotides including molecular beacons. Moreover, our results show that the method provides the possibility to address the relationship between the efficiency of uracil DNA glycosylase activity and the arrangement of the used oligonucleotide probes. For instance, the introduction of the nick into oligonucleotide containing the target base (uracil) resulted in the substantial decrease of uracil DNA glycosylase activity of both the bacterial glycosylase and glycosylases naturally present in nuclear lysates.


2021 ◽  
Author(s):  
Wenbin Liu ◽  
Guangwen Cao

In this chapter, we present the founding framework of a novel theory termed as Cancer Evolution-Development (Cancer Evo-Dev), based on the current understanding of hepatitis B virus (HBV) induced hepatocarcinogenesis. The interactions of genetic predispositions and HBV infection is responsible for the maintenance of chronic non-resolving inflammation. Under the inflammatory microenvironment, pro-inflammatory factors trans-activate the expression of cytidine deaminases and suppress the expression of uracil DNA glycosylase. The imbalance between the mutagenic forces and mutation-correcting forces facilitates the generations of somatic mutations, viral mutations, and viral integrations into the host genomes. The majority of cells with genomic mutations and mutated viruses are eliminated in survival competition. Only a small percentage of the mutated cells adapted to the hostile environment can survive, retro-differentiate, and function as cancer-initiating cells, representing a process of “mutation-selection-adaptation”. Cancer Evo-Dev lays the theoretical foundation for understanding the mechanisms by which chronic infection of HBV promotes hepatocarcinogenesis. This theory also plays an important role in specific prophylaxis, prediction, early diagnosis, and targeted treatment of cancers.


2021 ◽  
Author(s):  
Karen Salas Briceno ◽  
Susan R. Ross

Apolipoprotein B mRNA Editing Enzyme Catalytic Subunit 3 (APOBEC3) proteins are critical for the control of infection by retroviruses. These proteins deaminate cytidines in negative strand DNA during reverse transcription, leading to G to A changes in coding strands. Uracil DNA glycosylase (UNG) is a host enzyme that excises uracils in genomic DNA, which the base excision repair machinery then repairs. Whether UNG removes uracils found in retroviral DNA after APOBEC3-mediated mutation is not clear, and whether this occurs in vivo has not been demonstrated. To determine if UNG plays a role in the repair of retroviral DNA, we used APOBEC3G (A3G) transgenic mice which we showed previously had extensive deamination of murine leukemia virus (MLV) proviruses. The A3G transgene was crossed onto an UNG and mouse APOBEC3 knockout background (UNG-/-APO-/-) and the mice were infected with MLV. We found that virus infection levels were decreased in A3G UNG-/-APO-/- compared to A3G APO-/- mice. Deep sequencing of the proviruses showed that there were significantly higher levels of G-to-A mutations in proviral DNA from A3G transgenic UNG-/-APO-/- than A3G transgenic APO-/- mice, suggesting that UNG plays a role in the repair of uracil-containing proviruses. In in vitro studies, we found that cytoplasmic viral DNA deaminated by APOBEC3G was uracilated. In the absence of UNG, the uracil-containing proviruses integrated at higher levels into the genome than did those made in the presence of UNG. Thus, UNG also functions in the nucleus prior to integration by nicking uracil-containing viral DNA, thereby blocking integration. These data show that UNG plays a critical role in the repair of the damage inflicted by APOBEC3 deamination of reverse-transcribed DNA. Importance While APOBEC3-mediated mutation of retroviruses is well-established, what role the host base excision repair enzymes play in correcting these mutations is not clear. This question is especially difficult to address in vivo . Here, we use a transgenic mouse developed by our lab that expresses human APOBEC3G and also lacks the endogenous uracil DNA glycosylase ( Ung ) gene, and show that UNG removes uracils introduced by this cytidine deaminase in MLV reverse transcripts, thereby reducing G-to-A mutations in proviruses. Furthermore, our data suggest that UNG removes uracils at two stages in infection – in unintegrated nuclear viral reverse transcribed DNA, resulting in its degradation and second, in integrated proviruses, resulting in their repair. These data suggest that retroviruses damaged by host cytidine deaminases take advantage of the host DNA repair system to overcome this damage.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tan Lin ◽  
Likui Zhang ◽  
Mai Wu ◽  
Donghao Jiang ◽  
Zheng Li ◽  
...  

Since hyperthermophilic Archaea (HA) thrive in high-temperature environments, which accelerate the rates of deamination of base in DNA, their genomic stability is facing a severe challenge. Hypoxanthine (Hx) is one of the common deaminated bases in DNA. Generally, replication of Hx in DNA before repaired causes AT → GC mutation. Biochemical data have demonstrated that 3-methyladenine DNA glycosylase II (AlkA) and Family V uracil DNA glycosylase (UDG) from HA could excise Hx from DNA, thus triggering a base excision repair (BER) process for Hx repair. Besides, three endonucleases have been reported from HA: Endonuclease V (EndoV), Endonuclease Q (EndoQ), and Endonuclease NucS (EndoNucS), capable of cleaving Hx-containing DNA, thereby providing alternative pathways for Hx repair. Both EndoV and EndoQ could cleave one DNA strand with Hx, thus forming a nick and further initiating an alternative excision repair (AER) process for the follow-up repair. By comparison, EndoNucS cleaves both strands of Hx-containing DNA in a restriction endonuclease manner, thus producing a double-stranded break (DSB). This created DSB might be repaired by homologous recombination (HR) or by a combination activity of DNA polymerase (DNA pol), flap endonuclease 1 (FEN1), and DNA ligase (DNA lig). Herein, we reviewed the most recent advances in repair of Hx in DNA triggered by DNA glycosylases and endonucleases from HA, and proposed future research directions.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5177
Author(s):  
Michał Szewczuk ◽  
Karolina Boguszewska ◽  
Julia Kaźmierczak-Barańska ◽  
Bolesław T. Karwowski

Ionizing radiation is a factor that seriously damages cellular mechanisms/macromolecules, e.g., by inducing damage in the human genome, such as 5′,8-cyclo-2′-deoxypurines (cdPus). CdPus may become a component of clustered DNA lesions (CDL), which are notably unfavorable for the base excision repair system (BER). In this study, the influence of 5′S and 5′R diastereomers of 5′,8-cyclo-2′-deoxyadenosine (cdA) and 5′,8-cyclo-2′-deoxyguanosine (cdG) on the uracil-DNA glycosylase (UDG) and human AP site endonuclease 1 (hAPE1) activity has been taken under consideration. Synthetic oligonucleotides containing 2′-deoxyuridine (dU) and cdPu were used as a model of single-stranded CDL. The activity of the UDG and hAPE1 enzymes decreased in the presence of RcdG compared to ScdG. Contrary to the above, ScdA reduced enzyme activity more than RcdA. The presented results show the influence of cdPus lesions located within CDL on the activity of the initial stages of BER dependently on their position toward dU. Numerous studies have shown the biological importance of cdPus (e.g., as a risk of carcinogenesis). Due to that, it is important to understand how to recognize and eliminate this type of DNA damage from the genome.


2021 ◽  
Author(s):  
Karen Salas Briceno ◽  
Susan R. Ross

AbstractApolipoprotein B mRNA Editing Enzyme Catalytic Subunit 3 (APOBEC3) proteins are critical for the control of infection by retroviruses. These proteins deaminate cytidines in negative strand DNA during reverse transcription, leading to G to A changes in coding strands. Uracil DNA glycosylase (UNG) is a host enzyme that excises uracils in genomic DNA, which the base excision repair machinery then repairs. Whether UNG removes uracils found in retroviral DNA after APOBEC3-mediated mutation is not clear, and whether this occurs in vivo has not been demonstrated. To determine if UNG plays a role in the repair of retroviral DNA, we used APOBEC3G (A3G) transgenic mice which we showed previously had extensive deamination of murine leukemia virus (MLV) proviruses. The A3G transgene was crossed onto an UNG and mouse APOBEC3 knockout background (UNG-/-APO-/-) and the mice were infected with MLV. We found that virus infection levels were decreased in A3G UNG-/-APO-/- compared to A3G APO-/- mice. Deep sequencing of the proviruses showed that there were significantly higher levels of G-to-A mutations in proviral DNA from A3G transgenic UNG-/-APO-/- than A3G transgenic APO-/- mice, suggesting that UNG plays a role in the repair of uracil-containing proviruses. In in vitro studies, we found that cytoplasmic viral DNA deaminated by APOBEC3G was uracilated. In the absence of UNG, the uracil-containing proviruses integrated at higher levels into the genome than did those made in the presence of UNG. Thus, UNG also functions in the nucleus prior to integration by nicking uracil-containing viral DNA, thereby blocking integration. These data show that UNG plays a critical role in the repair of the damage inflicted by APOBEC3 deamination of reverse-transcribed DNA.ImportanceWhile APOBEC3-mediated mutation of retroviruses is well-established, what role the host base excision repair enzymes play in correcting these mutations is not clear. This question is especially difficult to address in vivo. Here, we use a transgenic mouse developed by our lab that expresses human APOBEC3G and also lacks the endogenous uracil DNA glycosylase (Ung) gene, and show that UNG removes uracils introduced by this cytidine deaminase in MLV reverse transcripts, thereby reducing G-to-A mutations in proviruses. Furthermore, our data suggest that UNG removes uracils at two stages in infection – in unintegrated nuclear viral reverse transcribed DNA, resulting in its degradation and second, in integrated proviruses, resulting in their repair. These data suggest that retroviruses damaged by host cytidine deaminases take advantage of the host DNA repair system to overcome this damage.


Sign in / Sign up

Export Citation Format

Share Document