scholarly journals Novel Nanobiocomposites Based on Natural Polysaccharides as Universal Trophic Low-Dose Micronutrients

2021 ◽  
Vol 22 (21) ◽  
pp. 12006
Author(s):  
Spartak S. Khutsishvili ◽  
Alla I. Perfileva ◽  
Olga A. Nozhkina ◽  
Tatjana V. Ganenko ◽  
Konstantin V. Krutovsky

New promising manganese-containing nanobiocomposites (NCs) based on natural polysaccharides, arabinogalactan (AG), arabinogalactan sulfate (AGS), and κ-carrageenan (κ-CG) were studied to develop novel multi-purpose trophic low-dose organomineral fertilizers. The general toxicological effects of manganese (Mn) on the vegetation of potatoes (Solanum tuberosum L.) was evaluated in this study. The essential physicochemical properties of this trace element in plant tissues, such as its elemental analysis and its spectroscopic parameters in electron paramagnetic resonance (EPR), were determined. Potato plants grown in an NC-containing medium demonstrated better biometric parameters than in the control medium, and no Mn accumulated in plant tissues. In addition, the synthesized NCs demonstrated a pronounced antibacterial effect against the phytopathogenic bacterium Clavibacter sepedonicus (Cms) and were proved to be safe for natural soil microflora.

2021 ◽  
Author(s):  
Bihao Luo ◽  
Chenfeng Xiao ◽  
Yuling Liu ◽  
Li Li ◽  
Liang Peng ◽  
...  

Abstract In waterlogged paddy soils, cadmium (Cd) can be precipitated as cadmium sulfide (CdS) under reductive environment, thereby limiting the absorption of Cd by plants. Multiple environmental factors (such as water, pH, Eh, etc.) played a role in the control of Cd mobility and bioavailability. In this study, we investigated the influence of the solar irradiation on the photo-dissolution of synthetic CdS-montmorillonite composites (CdS-M) in solution and the stability of Cdin natural soil. The release kinetic of Cd2+ showed that after the irradiation of simulated sunlight, CdS-M composites became less stable compared to the dark control. The solar irradiation seemed to enhance the release of Cd2+ from CdS significantly and continuously. Electron paramagnetic resonance (EPR) and quenching experiments confirmed that the photogenerated holes, O2·- and •OH were possibly involved in the photo-induced release of Cd2+, while the holes was primarily responsible for the reaction.Irradiation under alkaline solution or the presence of DOM, PO43-, CO32- and urea markedly inhibited the photodissolution process of CdS. The photo-mediated activation of Cd was further confirmed in paddy soil under natural sunlight, with a nearly 3-fold increase in concentration of extractable Cd during the 15 days irradiation. This study highlights the importance of photochemical transformation of Cd in the environmental water and soil.


1976 ◽  
Vol 37 (C7) ◽  
pp. C7-241-C7-246 ◽  
Author(s):  
J.P. VON DER WEID ◽  
L.C. SCAVARDA DO CARMO ◽  
R. R. DO SANTOS ◽  
B. KOILLER ◽  
S. COSTA RIBEIRO ◽  
...  

1964 ◽  
Vol 83 (7) ◽  
pp. 433-502 ◽  
Author(s):  
L.D. Bogomolova ◽  
V.N. Lazukin ◽  
I.V. Chepeleva

Sign in / Sign up

Export Citation Format

Share Document