scholarly journals DFT Study of the Molecular and Electronic Structure of Metal-Free Tetrabenzoporphyrin and Its Metal Complexes with Zn, Cd, Al, Ga, In

2022 ◽  
Vol 23 (2) ◽  
pp. 939
Author(s):  
Alexey V. Eroshin ◽  
Arseniy A. Otlyotov ◽  
Ilya A. Kuzmin ◽  
Pavel A. Stuzhin ◽  
Yuriy A. Zhabanov

The electronic and molecular structures of metal-free tetrabenzoporphyrin (H2TBP) and its complexes with zinc, cadmium, aluminum, gallium and indium were investigated by density functional theory (DFT) calculations with a def2-TZVP basis set. A geometrical structure of ZnTBP and CdTBP was found to possess D4h symmetry; AlClTBP, GaClTBP and InClTBP were non-planar complexes with C4v symmetry. The molecular structure of H2TBP belonged to the point symmetry group of D2h. According to the results of the natural bond orbital (NBO) analysis, the M-N bonds had a substantial ionic character in the cases of the Zn(II) and Cd(II) complexes, with a noticeably increased covalent contribution for Al(III), Ga(III) and In(III) complexes with an axial –Cl ligand. The lowest excited states were computed with the use of time-dependent density functional theory (TDDFT) calculations. The model electronic absorption spectra indicated a weak influence of the nature of the metal on the Q-band position.

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Mustafa Karakaya ◽  
Fatih Ucun ◽  
Ahmet Tokatlı

The optimized molecular structures and vibrational frequencies and also gauge including atomic orbital (GIAO)1H and13C NMR shift values of benzoylcholine chloride [(2-benzoyloxyethyl) trimethyl ammonium chloride] have been calculated using density functional theory (B3LYP) method with 6-31++G(d) basis set. The comparison of the experimental and calculated infrared (IR), Raman, and nuclear magnetic resonance (NMR) spectra has indicated that the experimental spectra are formed from the superposition of the spectra of two lowest energy conformers of the compound. So, it was concluded that the compound simultaneously exists in two optimized conformers in the ground state. Also the natural bond orbital (NBO) analysis has supported the simultaneous exiting of two conformers in the ground state. The calculated optimized geometric parameters (bond lengths and bond angles) and vibrational frequencies for both the lowest energy conformers were seen to be in a well agreement with the corresponding experimental data.


2019 ◽  
Vol 10 (2) ◽  
pp. 95-101
Author(s):  
Sebile Işık Büyükekşi ◽  
Namık Özdemir ◽  
Abdurrahman Şengül

A versatile synthetic building block, 2-amino-1,10-phenanthrolin-1-ium chloride (L∙HCl) was synthesized and characterized by IR, 1H and 13C NMR DEPT analysis, UV/Vis and single-crystal X-ray diffraction technique. The molecular geometry, vibrational wavenumbers and gauge including atomic orbital (GIAO), 1H and 13C NMR chemical shifts values of the title compound in the ground state were obtained by using density functional theory (DFT/B3LYP) method with 6-311++G(d,p) basis set and compared with the experimental data. Electronic absorption spectrum of the salt was determined using the time-dependent density functional theory (TD-DFT) method at the same level. In the NMR and electronic absorption spectra calculations, the effect of solvent on the theoretical parameters was included using the default model with DMSO as solvent. The obtained theoretical parameters agree well with the experimental findings.


2016 ◽  
Vol 34 (4) ◽  
pp. 886-904 ◽  
Author(s):  
Meryem Evecen ◽  
Hasan Tanak

AbstractIn this paper, the molecular geometry, vibrational frequencies and chemical shifts of (6-Methoxy-2-oxo-2H-chromen-4-yl)methyl pyrrolidine-1-carbodithioate in the ground state have been calculated using the Hartree-Fock and density functional methods with the 6-311++G(d,p) basis set. To investigate the nonlinear optical properties of the title compound, the polarizability and the first hyperpolarizability were calculated. The conformational properties of the molecule have been determined by analyzing molecular energy properties. Using the time dependent density functional theory, electronic absorption spectra have been calculated. Frontier molecular orbitals, natural bond orbitals, natural atomic charges and thermodynamical parameters were also investigated by using the density functional theory calculations.


2008 ◽  
Vol 63 (3-4) ◽  
pp. 175-182 ◽  
Author(s):  
Adnan Sağlam ◽  
Fatih Ucun

The optimized molecular structures, vibrational frequencies and corresponding vibrational assignments of the two planar O-cis and O-trans rotomers of 2,4-, 2,5- and 2,6-difluorobenzaldehyde have been calculated using ab initio Hartree-Fock (HF) and density functional theory (B3LYP) methods with the 6-311++G(d,p) basis set level. The calculations were adapted to the CS symmetries of all the molecules. The O-trans rotomers with lower energy of all the compounds have been found as preferential rotomers in the ground state. The mean vibrational deviations between the vibrational frequency values of the two conformers of all the compounds have been shown to increase while the relative energies increase, and so it has been concluded that the higher the relative energy between the two conformers the bigger is the mean vibrational deviation.


Author(s):  
Oleg V. Surov ◽  
Mikhail A. Krestianinov ◽  
Nugzar Zh. Mamardashvili

The structure optimization and calculation of electronic absorption spectra of meso-octa-methylcalix(4)pyrrole conformers was performed  by density- functional theory using hybrid B3LYP functional in cc-pVTZ basis set of Gaussian 09 package. Analysis of experimental UV-Vis spectra of solutions of calix(4)pyrrole was carried out in various solvents. The conclusion on the existence of a dynamic equilibrium between conformers in solutions of meso-octamethylcalix(4)pyrrole was made.


BIBECHANA ◽  
2017 ◽  
Vol 15 ◽  
pp. 131-139
Author(s):  
Bhawani Datt Joshi ◽  
Manoj Kumar Chaudhary

In this paper, natural bond orbital (NBO) analysis, nonlinear optical and the thermodynamic properties of 10-Acetyl-10H-phenothiazine 5-oxide have been analyzed by employing density functional theory level employing 6-311++G(d,p) basis set. NBO analysis reveals that the intra- intermolecular charge transfer occurs within the molecule leading to the stabilization. The predicted nonlinear optical properties (NLO) like; polarizability and first hyperpolarizabiliy support that the molecule could attract the interests for future investigation.BIBECHANA 15 (2018) 131-139


Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3831 ◽  
Author(s):  
Zixin Ju ◽  
Jie Sun ◽  
Yanping Liu

This paper presents a comparative study on natural indigo and indirubin in terms of molecular structures and spectral properties by using both computational and experimental methods. The spectral properties were analyzed with Fourier transform infrared (FTIR), Raman, UV-Visible, and fluorescence techniques. The density functional theory (DFT) method with B3LYP using 6-311G(d,p) basis set was utilized to obtain their optimized geometric structures and calculate the molecular electrostatic potential, frontier molecular orbitals, FTIR, and Raman spectra. The single-excitation configuration interaction (CIS), time-dependent density functional theory (TD-DFT), and polarization continuum model (PCM) were used to optimize the excited state structure and calculate the UV-Visible absorption and fluorescence spectra of the two molecules at B3LYP/6-311G(d,p) level. The results showed that all computational spectra agreed well with the experimental results. It was found that the same vibrational mode presents a lower frequency in indigo than that in indirubin. The frontier molecular orbital analysis demonstrated that the UV-Visible absorption and fluorescence bands of indigo and indirubin are mainly derived from π → π* transition. The results also implied that the indigo molecule is more conjugated and planar than indirubin, thereby exhibiting a longer maximum absorption wavelength and stronger fluorescence peak.


Author(s):  
Nicolin Tirza Pongajow ◽  
Juliandri Juliandri ◽  
Iwan Hastiawan

AbstrakDensity Functional Theory (DFT) merupakan salah satu metode komputasi yang digunakan untuk perhitungan kimia. Metode ini dapat menyelesaian persamaan Schrödinger secara sederhana karena didasarkan pada densitas elektron. Dalam penelitian ini ditentukan geometri dan karaktersitik ikatan dari senyawa kompleks Ni(II)-dibutilditiokarbamat menggunakan metode DFT dengan fungsi B3LYP, B3PW91 dan BLYP. Basis set yang akan digunakan adalah LANL2DZ dan perangkat lunak Gaussian 03W. Hasil optimasi geometri Ni(II)-dibutilditiokarbamat menunjukkan bentuk struktur yang sama dengan Ni(II)-dietilditiokarbamat sebagai data pembanding, yaitu persegi planar. Keterisian elektron pada ikatan Ni – S adalah 1,8873 elektron, yang merupakan 20,24 % elektron dari Ni dan 79,76 % dari S. Bentuk geometri persergi planar dibuktikan dengan hasil analisis NBO yang menunjukkan hibridisasi Ni(II)-dibutilditiokarbamat adalah d1,05sp2.05. Kata kunci: DFT, dibutilditiokarbamat, geometri, karakteristik ikatan, senyawa kompleks. AbstractDensity Functional Theory (DFT) is one of computational method that used for chemical calculation. This method simplifies the complex solution of Schrödinger equation using electron density. In this study the geometry and bond characterization of Ni(II)-dibutyldithiocarbamat complex compound was determined. The computational method used was Density Functional Theory as applied in B3LYP, B3PW91 and BLYP functions. All calculations were performed at LANL2DZ level of basis set as implemented Gaussian 03W. The theoretical result on geometry showed a similar structure to square-planar Ni(II)-dietyldithiocarbamate. The electronic occupation of Ni–S molecular orbital was 1.8873 electron, which was 20.24% electron contribution from Ni and 79.76% from S. Square-planar geometry proved by NBO analysis result that the hybridization of Ni(II)-dibutyldithiocarbamate was d1,05sp2.05. Keywords: DFT, dibutyldithiocarbamate, geometry, bond characterization, complexes compound.


Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2096 ◽  
Author(s):  
Muhammad Khalid ◽  
Riaz Hussain ◽  
Ajaz Hussain ◽  
Bakhat Ali ◽  
Farrukh Jaleel ◽  
...  

Herein, we report the quantum chemical results based on density functional theory for the polarizability (α) and first hyperpolarizability (β) values of diacetylene-functionalized organic molecules (DFOM) containing an electron acceptor (A) unit in the form of nitro group and electron donor (D) unit in the form of amino group. Six DFOM 1–6 have been designed by structural tailoring of the synthesized chromophore 4,4′-(buta-1,3-diyne-1,4-diyl) dianiline (R) and the influence of the D and A moieties on α and β was explored. Ground state geometries, HOMO-LUMO energies, and natural bond orbital (NBO) analysis of all DFOM (R and 1–6) were explored through B3LYP level of DFT and 6-31G(d,p) basis set. The polarizability (α), first hyperpolarizability (β) values were computed using B3LYP (gas phase), CAM-B3LYP (gas phase), CAM-B3LYP (solvent DMSO) methods and 6-31G(d,p) basis set combination. UV-Visible analysis was performed at CAM-B3LYP/6-31G(d,p) level of theory. Results illustrated that much reduced energy gap in the range of 2.212–2.809 eV was observed in designed DFOM 1–6 as compared to parent molecule R (4.405 eV). Designed DFOM (except for 2 and 4) were found red shifted compared to parent molecule R. An absorption at longer wavelength was observed for 6 with 371.46 nm. NBO analysis confirmed the involvement of extended conjugation and as well as charge transfer character towards the promising NLO response and red shift of molecules under study. Overall, compound 6 displayed large <α> and βtot, computed to be 333.40 (a.u.) (B3LYP gas), 302.38 (a.u.) (CAM-B3LYP gas), 380.46 (a.u.) (CAM-B3LYP solvent) and 24708.79 (a.u.), 11841.93 (a.u.), 25053.32 (a.u.) measured from B3LYP (gas), CAM-B3LYP (gas) and CAM-B3LYP (DMSO) methods respectively. This investigation provides a theoretical framework for conversion of centrosymmetric molecules into non-centrosymmetric architectures to discover NLO candidates for modern hi-tech applications.


2020 ◽  
Vol 19 (05) ◽  
pp. 2050020
Author(s):  
Sidra Ghafoor ◽  
Asim Mansha ◽  
Sadia Asim ◽  
Muhammad Usman ◽  
Ameer Fawad Zahoor ◽  
...  

In the present work, we have studied the 2-hydroxy 2-methyl propiophenone (2H2MPP) theoretically as well as experimentally. The optimized molecular structure has been obtained by the density functional theory (DFT), second-order Moller–Plesset perturbation theory (MP2) and Hartree Fock (HF) in the gas phase as well as in different media like ethanol, DMSO and heptane. FT-IR and FT-Raman spectra were computed as well as recorded and fundamental vibrational wavenumbers were assigned. The electronic absorption spectra were calculated by employing the time-dependent density functional theory (TD-DFT) to get the information about excitation energies, oscillator strength and excited state geometries in gas phase and in different solvent media. Chemical activity and chemical stability obtained by HOMO-LUMO studies using a HF/6-31[Formula: see text]G and MP2/6-311[Formula: see text]G calculations. The chemical interpretation of hyperconjugation interactions obtained by the Natural Bond Orbital (NBO) analysis. Moreover, electrostatic potential (ESP) calculations performed to get the visual representation of relative polarity of molecule. Thermodynamic parameters like enthalpy, entropy, heat capacity, and Gibbs free energy computed with varying temperature from 10[Formula: see text]K to 500[Formula: see text]K. The aim of the current investigation is to find out the quantum chemical properties of the title compound which show an active role in the pharmaceutical and printing industries.


Sign in / Sign up

Export Citation Format

Share Document