scholarly journals Molecular Structures and Spectral Properties of Natural Indigo and Indirubin: Experimental and DFT Studies

Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3831 ◽  
Author(s):  
Zixin Ju ◽  
Jie Sun ◽  
Yanping Liu

This paper presents a comparative study on natural indigo and indirubin in terms of molecular structures and spectral properties by using both computational and experimental methods. The spectral properties were analyzed with Fourier transform infrared (FTIR), Raman, UV-Visible, and fluorescence techniques. The density functional theory (DFT) method with B3LYP using 6-311G(d,p) basis set was utilized to obtain their optimized geometric structures and calculate the molecular electrostatic potential, frontier molecular orbitals, FTIR, and Raman spectra. The single-excitation configuration interaction (CIS), time-dependent density functional theory (TD-DFT), and polarization continuum model (PCM) were used to optimize the excited state structure and calculate the UV-Visible absorption and fluorescence spectra of the two molecules at B3LYP/6-311G(d,p) level. The results showed that all computational spectra agreed well with the experimental results. It was found that the same vibrational mode presents a lower frequency in indigo than that in indirubin. The frontier molecular orbital analysis demonstrated that the UV-Visible absorption and fluorescence bands of indigo and indirubin are mainly derived from π → π* transition. The results also implied that the indigo molecule is more conjugated and planar than indirubin, thereby exhibiting a longer maximum absorption wavelength and stronger fluorescence peak.

2021 ◽  
Vol 18 (1) ◽  
pp. 86-96
Author(s):  
Rohit S. Shinde

Present investigation deals with the synthesis and density functional theory study (DFT) of a chalcone derivative; (E)-3-(4-chlorophenyl)-1-(4-methoxyphenyl)prop-2-en-1-one (CPMPP). The synthesis of a CPMPP has been carried out by the reaction of 4-methoxyacetophenone and 4-chlorobenzalehyde in ethanol at 30 ℃ under ultrasound irradiation. The structure of a synthesized chalcone is affirmed on the basis of FT-IT, 1H NMR and 13C NMR. The geometry of a CPMPP is optimized by using the density functional theory method at the B3LYP/6-31G(d,p) basis set. The optimized geometrical parameters like bond length and bond angles have been computed. The absorption energies, oscillator strength, and electronic transitions have been derived at the TD-DFT method at the B3LYP/6-31G(d,p) level of theory for B3LYP/6-31G(d p) optimized geometries. The effect of polarity on the absorption energies is discussed by computing UV-visible results in dichloromethane (DCM). Since theoretically obtained wavenumbers are typically higher than experimental wavenumbers, computed wavenumbers were scaled with a scaling factor, and vibrational assignments were made by comparing experimental wavenumbers to scaled theoretical wavenumbers. Quantum chemical parameters have been determined and examined. Molecular electrostatic potential (MEP) surface plot analysis has been carried out at the same level of theory. Mulliken atomic charge study is also discussed in the present study.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Bapan Saha ◽  
Pradip Kumar Bhattacharyya

Abstract Effect of heteroatoms viz. BN and substituents viz. –Me (methyl), –OH (hydroxyl), –NH2 (amine), –COOH (carboxyl), and –CN (cyano) on the structural parameters, global reactivity, aromaticity, and UV-visible spectra of pyrene are studied with the help of density functional theory (DFT). Global reactivity parameters such as global hardness (η) and electrophilicity (ω) are calculated using density functional reactivity theory (DFRT). Time dependent density functional theory (TD-DFT) is explored for interpreting the UV-visible absorption spectra. Aromaticity of the pyrene rings are predicted from the nucleus independent chemical shift (NICS) values. Presence of BN unit and substituent induces reasonable impact on the studied parameters. The observed absorption spectra lie predominantly within the UV-region (both blue and red shifts are observed in presence of BN and substituent). HOMO energy and absorption spectra are affected nominally in solvent phase.


2008 ◽  
Vol 63 (3-4) ◽  
pp. 175-182 ◽  
Author(s):  
Adnan Sağlam ◽  
Fatih Ucun

The optimized molecular structures, vibrational frequencies and corresponding vibrational assignments of the two planar O-cis and O-trans rotomers of 2,4-, 2,5- and 2,6-difluorobenzaldehyde have been calculated using ab initio Hartree-Fock (HF) and density functional theory (B3LYP) methods with the 6-311++G(d,p) basis set level. The calculations were adapted to the CS symmetries of all the molecules. The O-trans rotomers with lower energy of all the compounds have been found as preferential rotomers in the ground state. The mean vibrational deviations between the vibrational frequency values of the two conformers of all the compounds have been shown to increase while the relative energies increase, and so it has been concluded that the higher the relative energy between the two conformers the bigger is the mean vibrational deviation.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Umer Mehmood ◽  
Ibnelwaleed A. Hussein ◽  
Khalil Harrabi ◽  
Shakeel Ahmed

The molecular structures and UV-visible absorption spectra of complex photosensitizers comprising oxadiazole isomers as theπ-bridges were analyzed by density functional theory (DFT) and time-dependent DFT. The ground state and excited state oxidation potentials, HOMOs and LUMOs energy levels, and electron injection from the dyes to semiconductor TiO2have been computed in vacuum here. The results show that all of the dyes may potentially be good photosensitizers in DSSC. To justify the simulation basis, N3 dye was also simulated under the similar conditions. Simulated absorption spectrum, HOMO, LUMO, and band gap values of N3 were compared with the experimental values. We also computed the electronic structure properties and absorption spectra of dye/(TiO2)8systems to elucidate the electron injection efficiency at the interface. This work is expected to give proper orientation for experimental synthesis.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Mustafa Karakaya ◽  
Fatih Ucun ◽  
Ahmet Tokatlı

The optimized molecular structures and vibrational frequencies and also gauge including atomic orbital (GIAO)1H and13C NMR shift values of benzoylcholine chloride [(2-benzoyloxyethyl) trimethyl ammonium chloride] have been calculated using density functional theory (B3LYP) method with 6-31++G(d) basis set. The comparison of the experimental and calculated infrared (IR), Raman, and nuclear magnetic resonance (NMR) spectra has indicated that the experimental spectra are formed from the superposition of the spectra of two lowest energy conformers of the compound. So, it was concluded that the compound simultaneously exists in two optimized conformers in the ground state. Also the natural bond orbital (NBO) analysis has supported the simultaneous exiting of two conformers in the ground state. The calculated optimized geometric parameters (bond lengths and bond angles) and vibrational frequencies for both the lowest energy conformers were seen to be in a well agreement with the corresponding experimental data.


2016 ◽  
Vol 94 (6) ◽  
pp. 583-593 ◽  
Author(s):  
Feride Akman

In the present work, two-armed macroinitiator containing coumarin were synthesized, characterized by Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance techniques and investigated theoretically using density functional theory (DFT) calculations. The molecular geometry, fundamental vibrational frequencies, atomic charges obtained from atomic polar tensors and Mulliken were analyzed by means of structure optimizations based on the DFT method with 6-31G+(d, p) as a basis set. The 1H chemical shifts were calculated by the gauge-including atomic orbital method and compared with available experimental data. The electronic properties, such as highest occupied molecular orbital – lowest unoccupied molecular orbital (HOMO–LUMO) energies, electron affinity, electronegativity, ionization energy, hardness, chemical potential, global softness, and global electrophilicity were calculated by using the DFT method. The electrostatic potential and molecular electrostatic potential surfaces were performed to predict the reactive sites of the two-armed macroinitiator. The energy difference between acceptor and donor and stabilization energy were determined using natural bond orbital analysis. The results show that the occurrence of intramolecular charge transfers within the polymer. Time-dependent density functional theory calculations of visible spectra were analyzed at different solvents. Finally, thermodynamic functions, such as enthalpy, heat capacity, and entropy, of the two-armed macroinitiator at different temperatures were calculated and the relationship with temperature was investigated.


2001 ◽  
Vol 79 (8) ◽  
pp. 1278-1283 ◽  
Author(s):  
Saul Wolfe ◽  
Zheng Shi

Using B3LYP density functional theory in conjunction with the 6-311++G** basis set, the relative rates of the initial rate-determining attack of ozone upon the carbon—carbon bonds of o-xylene are found to be 4,5- [Formula: see text] 3,4- > 2,3- > 1,2-. With the assumption that the final products glyoxal (G), methylglyoxal (M), and dimethylglyoxal (D) are determined by the site of the initial attack, and taking statistical factors into account, the ratio G:M:D is calculated to be 3:2:1. This is close to the value found experimentally, and identical to the result predicted by the contention that two nearly equivalent Kekulé–Pauling valence bond (resonance) structures of o-xylene exist and each localized carbon—carbon double bond of these structures is oxidized at the same rate. Although Frontier Molecular Orbital theory also predicts a 3:2:1 ratio of G:M:D, this theory incorrectly predicts that the initial attack of ozone will take place at the 1,2- and 4,5- bonds, with 1,2-attack slightly preferred. These results are discussed in relation to a recent historical analysis of the benzene problem, and it is concluded that since the products of ozonolysis of o-xylene are determined by the relative energies of the transition states leading to the four possible primary ozonides, these transition states should be the focus of theory.Key words: Kekulé structure, resonance, frontier orbital theory, density functional theory, kinetics.


2010 ◽  
Vol 65 (8-9) ◽  
pp. 720-724 ◽  
Author(s):  
Carlos J. Cobos ◽  
Adela E. Croce

The UV-visible absorption spectrum of the recently reported CF3OSO3 radical has been studied by using the time-dependent generalization of the density functional theory (TDDFT). For this a set of eleven hybrid functionals combined with the 6-311+G(3df) basis set were employed. The main features of the three experimental absorption bands of CF3OSO3 recorded over the 220 - 530 nm range are well reproduced by the calculations. A dissociation enthalpy for the CF3O-SO3 bond of 19.1 kcal mol−1 is predicted at the BAC-G3MP2//B3LYP/6-311+G(3df) level of theory


2021 ◽  
Vol 13 (3) ◽  
pp. 923-933
Author(s):  
M. A. Kaloo ◽  
H. Bashir ◽  
M. A. Rather ◽  
S. A. Majid ◽  
B. A. Bhat

In this work, the sensing mechanism of a novel anion receptor, 2-amino-((E)-(4-cyanobenzalidine) amino) maleonitrile reported by Sankar et al. (Analyst 138:4760-4763, 2013) was investigated theoretically with the help of density functional theory (DFT) and time-dependent density functional theory (TD-DFT). From the frontier molecular orbital analysis, it is reasonable to support the proposed charge transfer (ICT) enhancement in the receptor molecule in the presence of F−. A significant reduction in the energy gap (ΔE) from 4.014 eV to 2.342eV between highest occupied and lowest unoccupied energy levels was revealed, leading to the strong redshift of its absorption characteristics. Moreover, 1H NMR was also calculated to further understand the mechanistic insights by using the gauge independent atomic orbital (GIAO) method with B3LYP methods and the 6-311++G (d,p) basis set. The spectra were simulated, and the chemical shifts linked to TMS were compared with experimental. Besides, Intrinsic Reaction Coordinates (IRC) were also calculated to understand the sensing mechanism.


Sign in / Sign up

Export Citation Format

Share Document