scholarly journals Thermotropic Liquid-Crystalline Materials Based on Supramolecular Coordination Complexes

Inorganics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 2 ◽  
Author(s):  
Bruno Therrien

Liquid crystals are among us, in living organisms and in electronic devices, and they have contributed to the development of our modern society. Traditionally developed by organic chemists, the field of liquid-crystalline materials is now involving chemists and physicists of all domains (computational, physical, inorganic, supramolecular, electro-chemistry, polymers, materials, etc.,). Such diversity in researchers confirms that the field remains highly active and that new applications can be foreseen in the future. In this review, liquid-crystalline materials developed around coordination complexes are presented, focusing on those showing thermotropic behavior, a relatively unexplored family of compounds.

2019 ◽  
Vol 43 (18) ◽  
pp. 7099-7108 ◽  
Author(s):  
D. R. Vinayakumara ◽  
K. Swamynathan ◽  
Sandeep Kumar ◽  
Airody Vasudeva Adhikari

A series of prospective columnar liquid crystalline materials derived from novel organoboron complexes has been developed by virtue of their application in organic electronic devices.


Author(s):  
W.S. Putnam ◽  
C. Viney

Many sheared liquid crystalline materials (fibers, films and moldings) exhibit a fine banded microstructure when observed in the polarized light microscope. In some cases, for example Kevlar® fiber, the periodicity is close to the resolution limit of even the highest numerical aperture objectives. The periodic microstructure reflects a non-uniform alignment of the constituent molecules, and consequently is an indication that the mechanical properties will be less than optimal. Thus it is necessary to obtain quality micrographs for characterization, which in turn requires that fine detail should contribute significantly to image formation.It is textbook knowledge that the resolution achievable with a given microscope objective (numerical aperture NA) and a given wavelength of light (λ) increases as the angle of incidence of light at the specimen surface is increased. Stated in terms of the Abbe resolution criterion, resolution improves from λ/NA to λ/2NA with increasing departure from normal incidence.


Author(s):  
Nanqi Bao ◽  
Jake Gold ◽  
Tibor Szilvasi ◽  
Huaizhe Yu ◽  
Robert Twieg ◽  
...  

Computational methods can provide first-principles insights into the thermochemistry and kinetics of reactions at interfaces, but this capability has not been widely leveraged to design soft materials that respond selectively...


2005 ◽  
Vol 72 (9) ◽  
pp. 655
Author(s):  
K. Czuprynski ◽  
J. Gasowska ◽  
M. Tykarska ◽  
P. Kula ◽  
E. Sokól ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document