scholarly journals 3D-Printed Carbon Fiber Reinforced Polymer Composites: A Systematic Review

2020 ◽  
Vol 4 (3) ◽  
pp. 98 ◽  
Author(s):  
Seyed Hamid Reza Sanei ◽  
Diana Popescu

Fiber reinforced composites offer exceptional directional mechanical properties, and combining their advantages with the capability of 3D printing has resulted in many innovative research fronts. This review aims to summarize the methods and findings of research conducted on 3D-printed carbon fiber reinforced composites. The review is focused on commercially available printers and filaments, as their results are reproducible and the findings can be applied to functional parts. As the process parameters can be readily changed in preparation of a 3D-printed part, it has been the focus of many studies. In addition to typical composite driving factors such as fiber orientation, fiber volume fraction and stacking sequence, printing parameters such as infill density, infill pattern, nozzle speed, layer thickness, built orientation, nozzle and bed temperatures have shown to influence mechanical properties. Due to the unique advantages of 3D printing, in addition to conventional unidirectional fiber orientation, concentric fiber rings have been used to optimize the mechanical performance of a part. This review surveys the literature in 3D printing of chopped and continuous carbon fiber composites to provide a reference for the state-of-the-art efforts, existing limitations and new research frontiers.

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4305
Author(s):  
Amal Nassar ◽  
Mona Younis ◽  
Mohamed Elzareef ◽  
Eman Nassar

This work investigated the effects of heat treatment on the tensile behavior of 3D-printed high modules carbon fiber-reinforced composites. The manufacturing of samples with different material combinations using polylactic acid (PLA) reinforced with 9% carbon fiber (PLACF), acrylonitrile butadiene styrene (ABS) reinforced with 9% carbon fiber (ABSCF) were made. This paper addresses the tensile behavior of different structured arrangements at different% of densities between two kinds of filaments. The comparison of the tensile behavior between heat treated and untreated samples. The results showed that heat treatment improves the tensile properties of samples by enhancing the bonding of filament layers and by reducing the porosity content. At all structure specifications, the rectilinear pattern gives higher strength of up to 33% compared with the Archimedean chords pattern. Moreover, there is a limited improvement in the tensile strength and modulus of elasticity values for the samples treated at low heat-treatment temperature. The suggested methodology to evaluate the tensile behavior of the pairs of materials selected is innovative and could be used to examine sandwich designs as an alternative to producing multi-material components using inexpensive materials.


Sign in / Sign up

Export Citation Format

Share Document