continuous carbon fiber
Recently Published Documents


TOTAL DOCUMENTS

255
(FIVE YEARS 143)

H-INDEX

25
(FIVE YEARS 9)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 328
Author(s):  
Ritesh Ghimire ◽  
Frank Liou

Multifunctional carbon fiber composites provide promising results such as high strength-to-weight ratio, thermal and electrical conductivity, high-intensity radiated field, etc. for aerospace applications. Tailoring the electrical and structural properties of 3D-printed composites is the critical step for multifunctional performance. This paper presents a novel method for evaluating the effects of the coating material system on the continuous carbon fiber strand on the multifunctional properties of 3D-printed composites and the material’s microstructure. A new method was proposed for the quasi-static characterization of the Compressive-Electrical properties on the additively manufactured continuous carbon fiber solid laminate composites. In this paper, compressive and electrical conductivity tests were simultaneously conducted on the 3D-printed test coupons at ambient temperature. This new method modified the existing method of addressing monofunctional carbon fiber composites by combining the monofunctionality of two or more material systems to achieve the multifunctional performance on the same component, thereby reducing the significant weight. The quasi-static multifunctional properties reported a maximum compressive load of 4370 N, ultimate compressive strength of 136 MPa, and 61.2 G Ohms of electrical resistance. The presented method will significantly reduce weight and potentially replace the bulky electrical wires in spacecraft, unmanned aircraft systems (UAS), and aircraft.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 301
Author(s):  
Jiale Hu ◽  
Suhail Mubarak ◽  
Kunrong Li ◽  
Xu Huang ◽  
Weidong Huang ◽  
...  

Three-dimensional (3D) printing of continuous fiber-reinforced composites has been developed in recent decades as an alternative means to handle complex structures with excellent design flexibility and without mold forming. Although 3D printing has been increasingly used in the manufacturing industry, there is still room for the development of theories about how the process parameters affect microstructural properties to meet the mechanical requirements of the printed parts. In this paper, we investigated continuous carbon fiber-reinforced polyphenylene sulfide (CCF/PPS) as feedstock for fused deposition modeling (FDM) simulated by thermocompression. This study revealed that the samples manufactured using a layer-by-layer process have a high tensile strength up to 2041.29 MPa, which is improved by 68.8% compared with those prepared by the once-stacked method. Moreover, the mechanical–microstructure characterization relationships indicated that the compactness of the laminates is higher when the stacked CCF/PPS are separated, which can be explained based on both the void formation and the nanoindentation results. These reinforcements confirm the potential of remodeling the layer-up methods for the development of high-performance carbon fiber-reinforced thermoplastics. This study is of great significance to the improvement of the FDM process and opens broad prospects for the aerospace industry and continuous fiber-reinforced polymer matrix materials.


Author(s):  
Hongsheng Tan ◽  
Xiuxue Guo ◽  
Hao Tan ◽  
Qinglu Zhang ◽  
Changheng Liu ◽  
...  

Abstract In this work, a high fluidity polypropylene prepared with the metallocene catalyst (mPP) was used as matrix, carbon nanotube (CNT) and continuous carbon fiber (CCF) were added to prepare composites, and their mechanical properties, melting and crystallization behavior were investigated. In the mechanical properties, the effects of tension force in the preparation process and compatibilizer maleic anhydride grafted polypropylene (MAPP) on the tensile strength of the composites were researched. The results show that the tensile strength of the composites increases first and then decreases with the increase of tractive force. In addition, the melting and crystallization behaviors and dynamic mechanical behaviors of mPP, CNT/mPP and CNT/CCF/mPP composites were characterized and studied by a differential scanning calorimetry (DSC) and dynamic mechanical analyzer (DMA). The results show that the melting point (Tm ), crystallization temperature (Tc ) and storage modulus (E') of CNT/mPP are all increased by adding 1wt% CNT, especially the Tc is increased by 8.8 ºC. It shows that after CNT was added to mPP as inorganic carbon material, it plays a prominent role in heterogeneous nucleation. After CCF was composited with CNT/mPP, the composites with CCF content of 30 and 42wt% were prepared, and their Tm , Tc , crystallinity (Xc ) and E' were all improved, especially E' was greatly improved, such as the initial E' was increased by 5.64 and 11.74 times. Even at the end of the curve, the E' of the composites with CF is still significantly higher than that of mPP and CNT/mPP. It indicates that adding CCF will greatly improved the deformation resistance and load deformation temperature of mPP.


2021 ◽  
Vol 11 (23) ◽  
pp. 11315
Author(s):  
Clarissa Becker ◽  
Hannes Oberlercher ◽  
Rosmarie Brigitte Heim ◽  
Günter Wuzella ◽  
Lisa-Marie Faller ◽  
...  

The material properties of 3D printed continuous fiber composites have been studied many times in the last years. However, only a minimal number of samples were used to determine the properties in each of the reported studies. Moreover, reported results can hardly be compared due to different sample geometries. Consequently, the variability of the mechanical properties (from one sample to the other) is a crucial parameter that has not been well quantified yet. In the present work, the flexural properties of 3D printed continuous carbon fiber/nylon composite specimens were experimentally quantified, using batches of 15 test specimens. In order to account for the possible influence of the quality of the prepreg filaments on the observed variability, three different filament rolls were used to manufacture the different batches. Also, two configurations were tested, with a fiber direction parallel (longitudinal) or perpendicular (transverse) to the main axis of the specimens. The results show moderate to high variabilities of the flexural modulus, flexural strength and maximum strain. The coefficient of variation was more than twice as high in the transverse case as in the longitudinal case.


Sign in / Sign up

Export Citation Format

Share Document