delamination crack
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 10)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Author(s):  
NILESH J. VISHE ◽  
SAMEER B. MULANI ◽  
SAMIT ROY

Mode-I fatigue crack healing in carbon fiber-reinforced polymer (CFRP) composites subjected to fatigue loading is investigated in this study. Laminated composites are highly susceptible to delamination, and delamination due to fatigue loading is one of the most critical damage modes in composite structures that may lead to a catastrophic failure. Hence, it is paramount to investigate and quantify the delamination crack growth behavior due to fatigue loading and explore methods to heal the delamination. Therefore, double cantilever beam (DCB) specimens of a carbon fiber-reinforced thermoset polymer (CFRP) composite containing thermoplastic healants were manufactured. Mode- I fatigue delamination experiments were carried out for virgin (initial case) and up to seven repeated healing cycles. The main objective of using thermoplastic healants, i.e., polycaprolactone (PCL) and shape memory polymer (SMP), was to close and then heal the cracks formed during fatigue loading and retain the fatigue life of the DCB specimen. The in-situ healing was achieved by activating macro fiber composite (MFC) actuators bonded to the DCB specimen, where the high frequency vibration of the actuator provides the heat necessary to close the cracks using thermoplastic healants. The insitu healing was triggered using MFCs after 5000 cycles of initial loading to allow initial crack extension. The DCB specimen was then loaded up to half a million cycles to study the effect of healing on fatigue life. From the experimental data of the virgin and healed specimens, the Paris law parameters were extracted, and the results obtained were repeatable. Significant increase in maximum Mode-I strain energy release rate (G ) observed after in-situ healing is likely due to the increase in the bond stiffness of the DCB specimen material of the healed zone. More research is needed to investigate the exact mechanism for the increase of G . Mode-I fatigue life improvement of up to a factor of 2 was observed after in-situ healing for the same delamination crack growth with respect to the virgin cycle prior to healing. We envision that these findings will be helpful in extending the service life of composites and result in significant repair cost savings.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 904 ◽  
Author(s):  
Fethma M. Nor ◽  
Joong Yeon Lim ◽  
Mohd Nasir Tamin ◽  
Ho Yong Lee ◽  
D. Kurniawan

The mechanics of damage and fracture process in unidirectional carbon fiber reinforced polymer (CFRP) composites subjected to shear loading (Mode II) were examined using the experimental method of the three-point end-notch flexure (3ENF) test. The CFRP composite consists of [0o]16 with an insert film in the middle plane for a starter defect. A 3ENF test sample with a span of 50 mm and interface delamination crack length of 12.5 mm was tested to yield the load vs. deformation response. A sudden load drop observed at maximum force value indicates the onset of delamination crack propagation. The results are used to extract the energy release rate, GIIC, of the laminates with an insert film starter defect. The effect of the starter defect on the magnitude of GIIC was examined using the CFRP composite sample with a Mode II delamination pre-crack. The higher magnitude of GIIC for the sample with insert film starter defect was attributed to the initial straight geometry of the notch/interface crack and the toughness of the resin at the notch front of the fabricated film insert. The fractured sample was examined using a micro-computerized tomography scanner to establish the shape of the internal delamination crack front. Results revealed that the interface delamination propagated in a non-uniform manner, leaving a curved-shaped crack profile.


2019 ◽  
Vol 189 ◽  
pp. 635-643 ◽  
Author(s):  
Nilanjan Mitra ◽  
AlakKumar Patra ◽  
Shyamal Mondal ◽  
Prasanta Kumar Datta

2019 ◽  
Vol 2019.94 (0) ◽  
pp. P005
Author(s):  
Kenta WADA ◽  
Yoshimasa TAKAHASHI ◽  
Masanori TAKUMA ◽  
Ken-ichi SAITOH ◽  
Tomohiro SATO

2019 ◽  
Vol 2019.94 (0) ◽  
pp. 212
Author(s):  
Kosuke INOUE ◽  
Yoshimasa TAKAHASHI ◽  
Masanori TAKUMA ◽  
Ken-ichi SAITOH ◽  
Tomohiro SATO

Sign in / Sign up

Export Citation Format

Share Document