scholarly journals Effects of Dominant and Nondominant Limb Immobilization on Muscle Activation and Physical Demand during Ambulation with Axillary Crutches

2021 ◽  
Vol 6 (1) ◽  
pp. 16
Author(s):  
Kara B. Bellenfant ◽  
Gracie L. Robbins ◽  
Rebecca R. Rogers ◽  
Thomas J. Kopec ◽  
Christopher G. Ballmann

The purpose of this study was to investigate the effects of how limb dominance and joint immobilization alter markers of physical demand and muscle activation during ambulation with axillary crutches. In a crossover, counterbalanced study design, physically active females completed ambulation trials with three conditions: (1) bipedal walking (BW), (2) axillary crutch ambulation with their dominant limb (DOM), and (3) axillary crutch ambulation with their nondominant limb (NDOM). During the axillary crutch ambulation conditions, the non-weight-bearing knee joint was immobilized at a 30-degree flexion angle with a postoperative knee stabilizer. For each trial/condition, participants ambulated at 0.6, 0.8, and 1.0 mph for five minutes at each speed. Heart rate (HR) and rate of perceived exertion (RPE) were monitored throughout. Surface electromyography (sEMG) was used to record muscle activation of the medial gastrocnemius (MG), soleus (SOL), and tibialis anterior (TA) unilaterally on the weight-bearing limb. Biceps brachii (BB) and triceps brachii (TB) sEMG were measured bilaterally. sEMG signals for each immobilization condition were normalized to corresponding values for BW.HR (p < 0.001) and RPE (p < 0.001) were significantly higher for both the DOM and NDOM conditions compared to BW but no differences existed between the DOM and NDOM conditions (p > 0.05). No differences in lower limb muscle activation were noted for any muscles between the DOM and NDOM conditions (p > 0.05). Regardless of condition, BB activation ipsilateral to the ambulating limb was significantly lower during 0.6 mph (p = 0.005) and 0.8 mph (p = 0.016) compared to the same speeds for BB on the contralateral side. Contralateral TB activation was significantly higher during 0.6 mph compared to 0.8 mph (p = 0.009) and 1.0 mph (p = 0.029) irrespective of condition. In conclusion, limb dominance appears to not alter lower limb muscle activation and walking intensity while using axillary crutches. However, upper limb muscle activation was asymmetrical during axillary crutch use and largely dependent on speed. These results suggest that functional asymmetry may exist in upper limbs but not lower limbs during assistive device supported ambulation.

2012 ◽  
Vol 112 (6) ◽  
pp. 1054-1058 ◽  
Author(s):  
Neil J. Cronin ◽  
Rod S. Barrett ◽  
Christopher P. Carty

Human movement requires an ongoing, finely tuned interaction between muscular and tendinous tissues, so changes in the properties of either tissue could have important functional consequences. One condition that alters the functional demands placed on lower limb muscle-tendon units is the use of high-heeled shoes (HH), which force the foot into a plantarflexed position. Long-term HH use has been found to shorten medial gastrocnemius muscle fascicles and increase Achilles tendon stiffness, but the consequences of these changes for locomotor muscle-tendon function are unknown. This study examined the effects of habitual HH use on the neuromechanical behavior of triceps surae muscles during walking. The study population consisted of 9 habitual high heel wearers who had worn shoes with a minimum heel height of 5 cm at least 40 h/wk for a minimum of 2 yr, and 10 control participants who habitually wore heels for less than 10 h/wk. Participants walked at a self-selected speed over level ground while ground reaction forces, ankle and knee joint kinematics, lower limb muscle activity, and gastrocnemius fascicle length data were acquired. In long-term HH wearers, walking in HH resulted in substantial increases in muscle fascicle strains and muscle activation during the stance phase compared with barefoot walking. The results suggest that long-term high heel use may compromise muscle efficiency in walking and are consistent with reports that HH wearers often experience discomfort and muscle fatigue. Long-term HH use may also increase the risk of strain injuries.


2021 ◽  
pp. 1-16
Author(s):  
Sami Kaartinen ◽  
Mika Venojärvi ◽  
Kim J Lesch ◽  
Heikki Tikkanen ◽  
Paavo Vartiainen ◽  
...  

2018 ◽  
Vol 22 (2) ◽  
pp. 379-384
Author(s):  
Hosein Kouhzad Mohammadi ◽  
Mohammad Mehravar ◽  
Khosro Khademi Kalantari ◽  
Sedighe Sadat Naimi ◽  
Alireza Akbarzadeh Baghban ◽  
...  

2010 ◽  
Vol 18 (3) ◽  
pp. 163-168 ◽  
Author(s):  
Zong-Yan Cai ◽  
Cheng-Chen Hsu ◽  
Chin-Peng Su ◽  
Chin-Fan Lin ◽  
Yi-An Lin ◽  
...  

2010 ◽  
Vol 28 (6) ◽  
pp. 667-677 ◽  
Author(s):  
Massimiliano Ditroilo ◽  
Roberta Forte ◽  
Piero Benelli ◽  
Danilo Gambarara ◽  
Giuseppe De vito

Sign in / Sign up

Export Citation Format

Share Document