scholarly journals Isolation and Characterization of Endomycorrhizal Fungi Associated with Growth Promotion of Blueberry Plants

2021 ◽  
Vol 7 (8) ◽  
pp. 584
Author(s):  
Binbin Cai ◽  
Tony Vancov ◽  
Hanqi Si ◽  
Wenru Yang ◽  
Kunning Tong ◽  
...  

Despite their notable root mutualism with blueberries (Vaccinium spp.), studies related to Ericoid mycorrhizal (ERM) are relatively limited. In this study, we report the isolation of 14 endomycorrhizal fungi and their identification by fungal colony morphology characterization combined with PCR-amplified fungal internal transcribed spacer (ITS) sequence analyses. Six of the isolated strains were confirmed as beneficial mycorrhizal fungi for blueberry plants following inoculation. We observed the formation of typical ERM hyphae coil structures—which promote and nutritionally support growth—in blueberry seedlings and significant nitrogen and phosphorous content increases in diverse tissues. QRT-PCRs confirmed changes in VcPHT1s expression patterns. After the formation of ERM, PHT1-1 transcription in roots was upregulated by 1.4- to threefold, whilst expression of PHT1-3 and PHT1-4 in roots were downregulated 72% and 60%, respectively. Amino acid sequence analysis of all four VcPHT1s genes from the blueberry variety “Sharpblue” revealed an overall structural similarity of 67% and predicted transmembrane domains. Cloning and overexpression of PHT1-1 and PHT1-3 genes in transgenic Arabidopsis thaliana plants significantly enriched total phosphorus and chlorophyll content, confirming that PHT1-1 and PHT1-3 gene functions are associated with the transport and absorption of phosphorus.

2021 ◽  
Vol 12 ◽  
Author(s):  
Sara Gushgari-Doyle ◽  
Marcus Schicklberger ◽  
Yifan V. Li ◽  
Robert Walker ◽  
Romy Chakraborty

Endophytic nitrogen-fixing (diazotrophic) bacteria are essential members of the microbiome of switchgrass (Panicum virgatum), considered to be an important commodity crop in bioenergy production. While endophytic diazotrophs are known to provide fixed atmospheric nitrogen to their host plant, there are many other plant growth-promoting (PGP) capabilities of these organisms to be demonstrated. The diversity of PGP traits across different taxa of switchgrass-colonizing endophytes is understudied, yet critical for understanding endophytic function and improving cultivation methods of important commodity crops. Here, we present the isolation and characterization of three diazotrophic endophytes: Azospirillum agricola R1C, Klebsiella variicola F10Cl, and Raoultella terrigena R1Gly. Strains R1C and F10Cl were isolated from switchgrass and strain R1Gly, while isolated from tobacco, is demonstrated herein to colonize switchgrass. Each strain exhibited highly diverse genomic and phenotypic PGP capabilities. Strain F10Cl and R1Gly demonstrated the highest functional similarity, suggesting that, while endophyte community structure may vary widely based on host species, differences in functional diversity are not a clearly delineated. The results of this study advance our understanding of diazotrophic endophyte diversity, which will allow us to design robust strategies to improve cultivation methods of many economically important commodity crops.


Development ◽  
2000 ◽  
Vol 127 (22) ◽  
pp. 4743-4752 ◽  
Author(s):  
K.M. Smith ◽  
L. Gee ◽  
H.R. Bode

Developmental gradients are known to play important roles in axial patterning in hydra. Current efforts are directed toward elucidating the molecular basis of these gradients. We report the isolation and characterization of HyAlx, an aristaless-related gene in hydra. The expression patterns of the gene in adult hydra, as well as during bud formation, head regeneration and the formation of ectopic head structures along the body column, indicate the gene plays a role in the specification of tissue for tentacle formation. The use of RNAi provides more direct evidence for this conclusion. The different patterns of HyAlx expression during head regeneration and bud formation also provide support for a recent version of a reaction-diffusion model for axial patterning in hydra.


Sign in / Sign up

Export Citation Format

Share Document