scholarly journals Research Progress on Applications of Polyaniline (PANI) for Electrochemical Energy Storage and Conversion

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 548 ◽  
Author(s):  
Zhihua Li ◽  
Liangjun Gong

Conducting polyaniline (PANI) with high conductivity, ease of synthesis, high flexibility, low cost, environmental friendliness and unique redox properties has been extensively applied in electrochemical energy storage and conversion technologies including supercapacitors, rechargeable batteries and fuel cells. Pure PANI exhibits inferior stability as supercapacitive electrode, and can not meet the ever-increasing demand for more stable molecular structure, higher power/energy density and more N-active sites. The combination of PANI and other active materials like carbon materials, metal compounds and other conducting polymers (CPs) can make up for these disadvantages as supercapacitive electrode. As for rechargeable batteries and fuel cells, recent research related to PANI mainly focus on PANI modified composite electrodes and supported composite electrocatalysts respectively. In various PANI based composite structures, PANI usually acts as a conductive layer and network, and the resultant PANI based composites with various unique structures have demonstrated superior electrochemical performance in supercapacitors, rechargeable batteries and fuel cells due to the synergistic effect. Additionally, PANI derived N-doped carbon materials also have been widely used as metal-free electrocatalysts for fuel cells, which is also involved in this review. In the end, we give a brief outline of future advances and research directions on PANI.

Author(s):  
Dibakar Datta ◽  
Partha Mukherjee ◽  
Wilson K. S. Chiu

Abstract The increasing population growth, depletion of natural resources, and rising energy demand have sparked enormous research endeavors in electrochemical energy storage and conversion. For example, rechargeable lithium-ion batteries are ubiquitous in everyday life. Mechanics plays a critical role in designing a wide range of energy technologies. The emerging field of electro-chemo-mechanics, the interplay of mechanics and electrochemistry, is crucial for understanding the coupled physiochemical processes. The electrochemical phenomena can govern the mechanical response such as stress generation, deformation, fracture initiation/propagation, elasticity, plasticity, etc. Similarly, mechanical phenomena also influence the electrochemical properties such as device reliability, durability, etc. Therefore, the in-depth mechanical study of electrochemical systems is urgently necessary for fundamental science and technological applications. Over the past few years, there has been significant progress in modeling, theories, and experimental characterizations of mechanical aspects of energy storage and conversion. This timely special issue addressed some recent advances in electro-chemo-mechanics. We have selected eight papers covering a wide range of issues in batteries and fuel cells such as (i) deformation, microstructural changes, creep, overcharge detection and prevention, optimization of structural parameters in batteries, (ii) temperature and load variations, metal-free cathode catalyst in fuel cells. The selected papers cover a gamut of electrochemical-mechanics centric research in energy storage and conversion.


2020 ◽  
Vol 49 (8) ◽  
pp. 2378-2407 ◽  
Author(s):  
Lingjun Kong ◽  
Ming Zhong ◽  
Wei Shuang ◽  
Yunhua Xu ◽  
Xian-He Bu

This review provides references for the preparation of electroactive CPMs via rational design and modulation of active sites and the space around them, and their application in electrochemical energy storage and conversion systems.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3246
Author(s):  
Juzhe Liu ◽  
Rui Hao ◽  
Binbin Jia ◽  
Hewei Zhao ◽  
Lin Guo

Low-carbon society is calling for advanced electrochemical energy storage and conversion systems and techniques, in which functional electrode materials are a core factor. As a new member of the material family, two-dimensional amorphous nanomaterials (2D ANMs) are booming gradually and show promising application prospects in electrochemical fields for extended specific surface area, abundant active sites, tunable electron states, and faster ion transport capacity. Specifically, their flexible structures provide significant adjustment room that allows readily and desirable modification. Recent advances have witnessed omnifarious manipulation means on 2D ANMs for enhanced electrochemical performance. Here, this review is devoted to collecting and summarizing the manipulation strategies of 2D ANMs in terms of component interaction and geometric configuration design, expecting to promote the controllable development of such a new class of nanomaterial. Our view covers the 2D ANMs applied in electrochemical fields, including battery, supercapacitor, and electrocatalysis, meanwhile we also clarify the relationship between manipulation manner and beneficial effect on electrochemical properties. Finally, we conclude the review with our personal insights and provide an outlook for more effective manipulation ways on functional and practical 2D ANMs.


2019 ◽  
Vol 12 (04) ◽  
pp. 1950049 ◽  
Author(s):  
Xinqi Liang ◽  
Minghua Chen ◽  
Guoxiang Pan ◽  
Jianbo Wu ◽  
Xinhui Xia

The advancement of clean electrochemical technologies is highly related to the development of novel active materials. Especially, new carbon materials are playing great roles in the electrochemical energy storage and conversion devices. Herein, we discuss the recent progress on new carbon materials from several important aspects including new mold carbon sources, novel high-efficiency puffing method, tailored carbon arrays morphologies (vertical graphene and carbon nanotubes branch), and modified heteroatom (N and S)-doped carbon materials. Our perspective may shed a light on further study on new carbon materials for applications in energy storage and conversion.


Author(s):  
Zibo Zhai ◽  
Wei Yan ◽  
Dong Li ◽  
Shu-Qi Deng ◽  
David P Wilkinson ◽  
...  

Electrocatalysts play critical roles in electrochemical energy storage and conversion technologies such as fuel cells, metal-air batteries, and H2O/CO2/N2 electrolysis. Recently, metal-organic frameworks (MOFs)-derived electrocatalysts have been extensively explored not...


Sign in / Sign up

Export Citation Format

Share Document