scholarly journals Free Vibration Analysis of Closed Moderately Thick Cross-Ply Composite Laminated Cylindrical Shell with Arbitrary Boundary Conditions

Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 884 ◽  
Author(s):  
Dongyan Shi ◽  
Dongze He ◽  
Qingshan Wang ◽  
Chunlong Ma ◽  
Haisheng Shu

A semi-analytic method is adopted to analyze the free vibration characteristics of the moderately thick composite laminated cylindrical shell with arbitrary classical and elastic boundary conditions. By Hamilton’s principle and first-order shear deformation theory, the governing equation of the composite shell can be established. The displacement variables are transformed into the wave function forms to ensure the correctness of the governing equation. Based on the kinetic relationship between the displacement variables and force resultants, the final equation associated with arbitrary boundary conditions is established. The dichotomy method is conducted to calculate the natural frequencies of the composite shell. For verifying the correctness of the present method, the results by the present method are compared with those in the pieces of literatures with various boundary conditions. Furthermore, some numerical examples are calculated to investigate the effect of several parameters on the composite shell, such as length to radius ratios, thickness to radius ratios and elastic restrained constants.

2021 ◽  
pp. 109963622110204
Author(s):  
Xue-Yang Miao ◽  
Chao-Feng Li ◽  
Yu-Lin Jiang ◽  
Zi-Xuan Zhang

In this paper, a unified method is developed to analyze free vibrations of the three-layer functionally graded cylindrical shell with non-uniform thickness. The middle layer is composed of two-dimensional functionally gradient materials (2D-FGMs), whose thickness is set as a function of smooth continuity. Four sets of artificial springs are assigned at the ends of the shells to satisfy the arbitrary boundary conditions. The Sanders’ shell theory is used to obtain the strain and curvature-displacement relations. Furthermore, the Chebyshev polynomials are selected as the admissible function to improve computational efficiency, and the equation of motion is derived by the Rayleigh–Ritz method. The effects of spring stiffness, volume fraction indexes, configuration on of shell, and the change in thickness of the middle layer on the modal characteristics of the new structural shell are also analyzed.


2013 ◽  
Vol 20 (3) ◽  
pp. 459-479 ◽  
Author(s):  
Meixia Chen ◽  
Jianhui Wei ◽  
Kun Xie ◽  
Naiqi Deng ◽  
Guoxiang Hou

Wave based method which can be recognized as a semi-analytical and semi-numerical method is presented to analyze the free vibration characteristics of ring stiffened cylindrical shell with intermediate large frame ribs for arbitrary boundary conditions. According to the structure type and the positions of discontinuities, the model is divided into different substructures whose vibration field is expanded by wave functions which are exactly analytical solutions to the governing equations of the motions of corresponding structure type. Boundary conditions and continuity equations between different substructures are used to form the final matrix to be solved. Natural frequencies and vibration mode shapes are calculated by wave based method and the results show good agreement with finite element method for clamped-clamped, shear diaphragm – shear diaphragm and free-free boundary conditions. Free vibration characteristics of ring stiffened cylindrical shells with intermediate large frame ribs are compared with those with bulkheads and those with all ordinary ribs. Effects of the size, the number and the distribution of intermediate large frame rib are investigated. The frame rib which is large enough is playing a role as bulkhead, which can be considered imposing simply supported and clamped constraints at one end of the cabin and dividing the cylindrical shell into several cabins vibrating separately at their own natural frequencies.


2016 ◽  
Vol 2016 ◽  
pp. 1-18 ◽  
Author(s):  
Dong Tang ◽  
Guoxun Wu ◽  
Xiongliang Yao ◽  
Chuanlong Wang

An analytical procedure for free vibration analysis of circular cylindrical shells with arbitrary boundary conditions is developed with the employment of the method of reverberation-ray matrix. Based on the Flügge thin shell theory, the equations of motion are solved and exact solutions of the traveling wave form along the axial direction and the standing wave form along the circumferential direction are obtained. With such a unidirectional traveling wave form solution, the method of reverberation-ray matrix is introduced to derive a unified and compact form of equation for natural frequencies of circular cylindrical shells with arbitrary boundary conditions. The exact frequency parameters obtained in this paper are validated by comparing with those given by other researchers. The effects of the elastic restraints on the frequency parameters are examined in detail and some novel and useful conclusions are achieved.


Sign in / Sign up

Export Citation Format

Share Document