scholarly journals Physical Properties of Electropolished CoCrMo Alloy Coated with Biodegradable Polymeric Coatings Releasing Heparin after Prolonged Exposure to Artificial Urine

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2551
Author(s):  
Wojciech Kajzer ◽  
Janusz Szewczenko ◽  
Anita Kajzer ◽  
Marcin Basiaga ◽  
Joanna Jaworska ◽  
...  

In this study, we aimed to determine the effect of long-term exposure to artificial urine on the physical properties of CoCrMo alloy with biodegradable heparin-releasing polymeric coatings. Variants of polymer coatings of poly(L,L-lactide-ɛ-caprolactone) (P(L,L-L/CL)) and poly(D,L-lactide-ɛ-caprolactone) (P(D,L-L/CL)) constituting the base for heparin-releasing (HEP) polyvinyl alcohol (PVA) coatings were analyzed. The coatings were applied by the dip-coating method. Heparin was used to counteract the incrustation process in the artificial urine. The study included tests of wettability, resistance to pitting and crevice corrosion, determination of the mass density of metal ions penetrating into the artificial urine, and the kinetics of heparin release. In addition, microscopic observations of surface roughness and adhesion to the metal substrate were performed. Electrolytically polished CoCrMo samples (as a reference level) and samples with polymer coatings were used for the tests. The tests were conducted on samples in the initial state and after 30, 60, and 90 days of exposure to artificial urine. The analysis of the test results shows that the polymer coatings contribute by improving the resistance of the metal substrate to pitting and crevice corrosion in the initial state and reducing (as compared with the metal substrate) the mass density of metal ion release into the artificial urine. Moreover, the PVA + HEP coating, regardless of the base polymer coatings used, contributes to a reduction in the incrustation process in the first 30 days of exposure to the artificial urine.

Alloy Digest ◽  
1996 ◽  
Vol 45 (1) ◽  

Abstract Allegheny Ludlum AL276 is widely used in the most severe environments found in chemical plants and in power plant desulfurization systems. The high molybdenum level with tungsten gives excellent pitting and crevice corrosion resistance. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, joining, and surface treatment. Filing Code: Ni-497. Producer or source: Allegheny Ludlum Corporation.


Alloy Digest ◽  
1985 ◽  
Vol 34 (11) ◽  

Abstract NICROFER 5716 HMoW is a nickel-chromium-molybdenum alloy with tungsten and extremely low carbon and silicon contents. It has excellent resistance to crevice corrosion, pitting and stress-corrosion cracking. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, machining, and joining. Filing Code: Ni-324. Producer or source: Vereingte Deutsche Metallwerke AG.


Alloy Digest ◽  
2000 ◽  
Vol 49 (3) ◽  

Abstract AL-22 is a wrought 22Cr-13.5Mo-3W-4Fe high-nickel alloy with outstanding and versatile corrosion resistance. The alloy is available in plate and is used where excellent corrosion, pitting, or crevice corrosion resistance is needed. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on corrosion resistance as well as joining. Filing Code: Ni-559. Producer or source: Allegheny Ludlum Corporation.


Alloy Digest ◽  
2012 ◽  
Vol 61 (4) ◽  

Abstract Böhler (or Boehler) A911 is a super duplex ferritic-austenitic chromium-nickel-molybdenum stainless steel with excellent resistance to stress-corrosion cracking, pitting, and crevice corrosion. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: SS-1119. Producer or source: Böhler-Uddeholm Specialty Metals Inc..


Alloy Digest ◽  
1979 ◽  
Vol 28 (5) ◽  

Abstract SEA-CURE is a ferritic stainless steel designed to provide high resistance to pitting and crevice corrosion in condensers cooled by saline or brackish water. It is used for condenser tubes and has great potential for many other uses. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-364. Producer or source: Trent Tube.


Alloy Digest ◽  
2010 ◽  
Vol 59 (8) ◽  

Abstract NAS 64 is a duplex stainless steel with molybdenum for pitting and crevice corrosion resistance and a duplex microstructure for resistance to stress-corrosion cracking. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-1072. Producer or source: Nippon Yakin Kogyo Company Ltd.


Alloy Digest ◽  
1998 ◽  
Vol 47 (1) ◽  

Abstract CN-3MN is the cast version of AL-6XN wrought alloy UNS N08367 (see Alloy Digest SS-494). The alloy has a high molybdenum content and provides excellent pitting and crevice corrosion resistance to all waters. This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on casting, heat treating, and joining. Filing Code: SS-701. Producer or source: Allegheny Ludlum Corporation. Originally published November 1997, revised January 1998.


Alloy Digest ◽  
2015 ◽  
Vol 64 (7) ◽  

Abstract NAS 185N is one of the first 6% molybdenum alloys with its great general pitting and crevice corrosion resistance. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-1217. Producer or source: Nippon Yakin Kogyo Company Ltd.


2020 ◽  
Vol 6 (1) ◽  
pp. 1-6
Author(s):  
Irina A. Portnykh ◽  
Aleksandr V. Kozlov ◽  
Valery L. Panchenko ◽  
Vyacheslav S. Shikhalev

The microstructures and physical properties of the austenitic Cr18Ni9-grade steel after 22 and 33 years of operation as part of the reactor internals were tested for assessing the conditions of the BN-600 reactor non-replaceable components (internals) and the potential of their subsequent use in predicting the reactor ultimate life. The paper presents histograms of the porosity distribution depending on the void size, in samples taken from portions that were subjected to neutron irradiation with displacement rates ranging from 1.0×10–9 to 4.3×10–8 dpa/s at temperatures from 370 to 440 °C. The elasticity characteristics were measured by resonance-type ultrasonic technique for the samples taken from the same portions of material. It was demonstrated that swelling calculated using the histograms of the porosity distribution depending on the void size has the maximum value at ~415 °C and after 33 years of irradiation reaches values of ~3%. Long-term variations of Young’s modulus demonstrate non-monotonous dependence on the damage dose. The maximum relative variation of Young’s modulus after 22 and 33 years of operation does not exceed 2% and 6%, respectively, of the values corresponding to the initial state. It was shown that along with the irradiation-induced swelling the changes in the physical properties are also affected in the process of irradiation by other structural changes and, in particular, by the formation of secondary phases. As shown by the results of the studies, operation of the BN-600 reactor internals made of Cr18Ni9-grade steel can be extended beyond 33 years of service. The comparison of the results obtained for the material after 22 and 33 years of operation contains information required for describing subsequent changes of the structure and properties of the Cr18Ni9 internals. The obtained results can be used for forecasting the reactor ultimate life within the framework of existing and developed models.


Sign in / Sign up

Export Citation Format

Share Document