clayey soils
Recently Published Documents


TOTAL DOCUMENTS

775
(FIVE YEARS 183)

H-INDEX

41
(FIVE YEARS 6)

2022 ◽  
Vol 217 ◽  
pp. 106388
Author(s):  
Hyunwook Choo ◽  
Junghee Park ◽  
Thu Thi Do ◽  
Changho Lee

2022 ◽  
Vol 12 (2) ◽  
pp. 802
Author(s):  
Elena Bragar ◽  
Yakov Pronozin ◽  
Askar Zhussupbekov ◽  
Alexander Gerber ◽  
Assel Sarsembayeva ◽  
...  

Destructuring settlements due to frost heave during the structures’ exploitation are often not taken into account at the designing stage, although they are indirectly related to the bearing capacity of the soils. The objective of this research was analyzing the effect of the number of freezing-thawing cycles on the strength characteristics of soils. A paired experiment with various initial parameters (void ratio, initial moisture content, and the number of freezing-thawing cycles) was carried out. According to the experimental results, the cohesion largely depends on the above parameters which might lead to its decrease by up to three times. The angle of internal friction demonstrated an indefinite behavior during the freeze-thaw cycles, which is confirmed by a literature review. Freezing–thawing cycles significantly decrease the soil bearing capacity: up to 44% after 10 freezing-thawing cycles for soil with and . However, in the case of and it increased by 33%. A program based on the least-squares method was used to calculate the approximation coefficients of the dependence describing the changes in strength characteristics from the abovementioned parameters. Changes in strength characteristics must be taken into account when designing structures, as they can lead to additional settlement or even subsidence of the foundations.


2022 ◽  
Vol 961 (1) ◽  
pp. 012057
Author(s):  
BA Al-Dawoodi ◽  
MQ Waheed ◽  
FH Rahil

Abstract This study discusses the results of simulation a finite element analysis of the load-settlement curve using soft soil model of shallow foundation subjected to axial load rested on three different types of clayey soils, it was considered different shear strength parameters (C=16, C=25, and C=70). It was concluded for clayey soil of C=16, there was a match to the experimental load – settlement curve using the soft soil model. It was also observed increase in the foundation width led to an increase in bearing capacity, however, bearing capacity increased by around (79 %) for an increase in footing width of (6.25), so it was about (144%) for (12.5).


2022 ◽  
Vol 11 (01) ◽  
pp. 27-30
Author(s):  
Ekrem Kalkan

The clayey soils in areas with seasonal frost are exposed to at least one freeze-thaw cycle every year and worsen their engineering properties. To prevent the engineering properties of clayey soils, it is necessary to improve the freeze-thaw resistance of them. In this study, the clayey soil was stabilized by using red mud and cement additive materials. Prepared samples of clayey soil and stabilized clayey soil were subjected to the unconfined compressive test. To investigate the effects of red mud and cement additive materials on the freeze-thaw resistance of clayey soil, the natural and stabilized expansive soil samples were exposed to the freeze-thaw cycles under laboratory conditions. The obtained results showed that the red mud and cement additive materials increased the freeze-thaw resistance of clayey soil. Consequently, it was concluded that red mud and cement additive materials can be successfully used to improve the freeze-thaw resistance of clayey soils.


2022 ◽  
Vol 11 (01) ◽  
pp. 31-34
Author(s):  
Necmi Yarbaş ◽  
Ekrem Kalkan

The compacted clayey soils crack on drying because of their high swelling potential, and their hydraulic conductivities increase. To solve this problem, it is essential to stabilize the clayey soils using additive materials. The aim of this study is to examine the suitability of quartzite as a stabilization material to reduce the development of desiccation cracks in compacted clayey liner and cover systems. Experimental study was conducted to investigate the effect of wetting-drying cycles on the initiation and evolution of cracks in compacted clayey soils. For experimental studies, seven samples were prepared stabilized by using 0%, 2.5%, 5%, 7,5%, 10%, 12,5% and 15% quartzite and then they were subjected to four subsequent wetting-drying cycles. The results show that quartzite decreases the development of desiccation cracks on the surface of compacted samples. It is concluded that quartzite as a geological material can be successfully used to reduce the development of desiccation cracks in compacted clayey liner and cover systems exposed wetting-drying cycles.


2021 ◽  
Vol 39 (12) ◽  
pp. 1789-1796
Author(s):  
Karam Khalifa ◽  
Mohammed Fattah ◽  
Nahla Salim
Keyword(s):  

Author(s):  
Jin-Jian Xu ◽  
Chao-Sheng Tang ◽  
Qing Cheng ◽  
Qi-liang Xu ◽  
Hilary I. Inyang ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7347
Author(s):  
Francisco Bañuelos-García ◽  
Michael Ring ◽  
Edgar Mendoza ◽  
Rodolfo Silva

In recent years, ocean current turbines have proven to be a reliable device for renewable energy generation. A crucial element of these turbines are the foundations, since they limit the displacement of the turbine, which is key in achieving efficiency in energy conversion, and can account for up to 26% of the total cost of the project. Most design procedures for foundations focus on sandy and clayey soils, but rock soils often predominate in tropical locations where marine currents are suitable for the installation of this type of turbine. This paper presents a design procedure for steel pile anchors (PAs) and concrete dead weight anchors (DWAs) on weak rock soils, using the assumptions of current technical documents and design codes commonly used in the industry for marine structures. Using specific designs for PA and DWA anchors, the procedure was theoretically assessed for a site off Cozumel Island, Mexico. The results show that the dimensions needed for DWAs are substantially larger than those for PAs. Therefore, whenever drilling is economically and operatively possible, piles would be preferable for the foundations of current turbine systems.


Sign in / Sign up

Export Citation Format

Share Document