scholarly journals Comparative Investigation of the Experimental Determination of AA5086 FLCs under Different Necking Criteria

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3685
Author(s):  
Xiangrui Kong ◽  
Xingrong Chu ◽  
Chongqian Chen ◽  
Yangang Wang ◽  
Peixing Liu ◽  
...  

The construction of a forming limit diagram (FLD) is a conventional approach to obtain limit strains and to evaluate the formability of sheet metal. Appropriate necking criteria should be applied to determine the forming limit curve (FLC) accurately. In recent years, deep research on the determination of the FLC has been carried out; meanwhile, several necking criteria have been proposed. However, the application of inappropriate necking criteria would cause deviations when determining FLCs. In this study, both Marciniak and Nakajima tests were carried out on the AA5086 aluminum sheet to make a comparative investigation of different necking criteria in the determination of FLCs. In the Marciniak test, four existing necking criteria were chosen to construct FLCs, and analyzed in detail. The well-performed time dependent and position dependent methods were selected for the Nakajima test. Meanwhile, the modified Wang method based on the height change of the adjacent points was proposed. The comparative results showed that the time and position dependent methods were relatively conservative in both experiments, while the modified Wang method could identify the onset of localized necking more accurately.

2012 ◽  
Vol 504-506 ◽  
pp. 17-22 ◽  
Author(s):  
Dmitry Vysochinskiy ◽  
Terence Coudert ◽  
Aase Reyes ◽  
Odd Geir Lademo

Forming limit strains are used to construct a forming limit diagram (FLD), which is a diagram in the principal strain space, traditionally used for designing forming operations of sheet metals. A line indicating the boundary between safe and unsafe strains is often called the forming limit curve (FLC). FLDs are also used to evaluate results from finite element simulations. Therefore consistency and reproducibility are important. This paper deals with the experimental determination of forming limit strains from Marciniak-Kuczynski (MK) tests. The material tested is AA6016 aluminum alloy in three different conditions: virgin material and material subjected to 5% and 8% deformation by rolling. Strains were measured by the use of digital image correlation (DIC) technique. Forming limit strains were determined by the use of two automated methods. The results from the two methods are compared and evaluated regarding their applicability to the Marciniak-Kuczynski test and ability to capture actual forming limit strains.


2021 ◽  
Author(s):  
Angela Cusanno ◽  
Shanmukha Moturu ◽  
David Carty ◽  
Gianfranco Palumbo

The hydraulic bulge test represents an effective experimental method to characterise sheet metals since the equivalent strains before failure are much larger than those measured during tensile testing and there is nearly no frictional effect on the results. Recently this test has been proposed not only for extracting data concerning the equi-biaxial strain condition, but to determine the forming limit diagram (FLD) in the range of positive minor strains. In the proposed methodology, different strain paths can be obtained by merely using a test blank having two holes with a suitable geometry and position to be tested, without the need of dies with elliptical apertures. However, a carrier sheet is necessary, thus implying results may be affected by friction effects. This paper proposes a new methodology for the determination of the right side of the Forming Limit Curve (FLC), based on the adoption of local heat treatments aimed at determining different strain paths on the blank to be tested while using the classical circular die for bulge tests. In particular, the formability of the alloy AA5754-H32 was investigated; 3D Finite Element simulations were conducted setting different laser strategies and monitoring the resulting strain path. Results revealed that the proposed methodology supports obtaining many additional points in the right side of the FLC, thus being effective and friction free.


2015 ◽  
Vol 21 (4) ◽  
pp. 269 ◽  
Author(s):  
Jan Slota ◽  
Miroslav Jurčišin ◽  
Emil Spišák ◽  
Marek Šiser

To assess formability in sheet forming, experimentally determined Forming Limit Curves (FLC) are often used. These conventional FLCs represent the forming limits (i.e. onset of necking) of a sheet material subjected to in-plane deformation or almost in-plane deformation. A widely used approach to experimentally determine the onset of necking of sheet material subjected to in-plane and almost in-plane deformation is formulated in ISO 12004. The aim of this work is to investigate limit strains for deep drawing quality sheet metal of HX180BD made by ArcelorMittal with nominal thickness 0.6 mm. The FLC curve has been measured by implementation of Nakajima test on universal testing machine Erichsen 145-60. The Nakajima test has been measured according to EN ISO 12004-2. Limit strains have been measured using 3D photogrammetric system ARAMIS by GOM. Forming limit curve was evaluated both the section method and the time dependent technique. The resulting experimental FLC curves were compared. With the time based method for the determination of FLC a greater strain values was achieved.


2015 ◽  
Vol 766-767 ◽  
pp. 416-421
Author(s):  
S. Vijayananth ◽  
V. Jayaseelan ◽  
G. Shivasubbramanian

Formability of a material is defined as its ability to deform into desired shape without being fracture. There will always be a need for formability tests, a larger number of tests have been used in an effort to measure the formability of sheet materials. Aluminium Alloy 6061 is a magnesium and silicon alloy of aluminium. It is also called as marine material as it has high corrosion resistance to seawater. In this paper Formability test of AA6061 sheet is done by Forming Limit Diagram (FLD) Analysis. FLD or Forming Limit Curve (FLC) for the forming processes of AA6061 sheets is obtained by Experimental method and FEM. Experimental method involves Deep drawing test of the sheet and ANSYS software is used for FEM.


2007 ◽  
Vol 344 ◽  
pp. 113-118 ◽  
Author(s):  
Massimo Tolazzi ◽  
Marion Merklein

This paper presents a method for the experimental determination of forming limit diagrams under non linear strain paths. The method consists in pre-forming the sheets under two different strain conditions: uniaxial and biaxial, and then stretching the samples, cut out of the preformed sheets, using a Nakajima testing setup. The optical deformation measurement system used for the process analysis (ARAMIS, Company GOM) allows to record and to analyze the strain distribution very precisely with respect to both time and space. As a reference also the FLDs of the investigated grades (the deep drawing steel DC04, the dual phase steel DP450 and the aluminum alloy AA5754) in as-received conditions were determined. The results show as expected an influence of the pre-forming conditions on the forming limit of the materials, with an increased formability in the case of biaxial stretching after uniaxial pre-forming and a reduced formability for uniaxial load after biaxial stretching if compared to the case of linear strain paths. These effects can be observed for all the investigated materials and can be also described in terms of a shifting of the FLD, which is related to the art and magnitude of the pre-deformation.


2006 ◽  
Vol 519-521 ◽  
pp. 111-116 ◽  
Author(s):  
Q. Situ ◽  
Mukesh K. Jain ◽  
M. Bruhis

Forming limit diagram (FLD) is a measure of the formability of a sheet material. The major-minor strain pairs that are closest to the neck on multiple specimens of various strain paths are utilized to construct a boundary between safe and unsafe zones. The challenge to obtain the FLD is the determination of incipient necking. Three approaches to determine the limit strains have been investigated and compared in this research in order to establish the optimal one for implementation: (1) commonly used Bragard criterion ( 1)e Br with periodic grids; (2) tracking the region of large local strains from strain history to locate the instance when critical major strain ( 1)e cr happens; (3) post-processing of strain history to locate the inflection in the major strain rate curve 1 max (e&&) at the onset of localization. The last criterion of inflection in strain rate 1 max (e&&) carries both a numerical and a physical meaning towards developing an understanding of flow localization, formability and fracture.


Sign in / Sign up

Export Citation Format

Share Document