localized necking
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 9)

H-INDEX

22
(FIVE YEARS 2)

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3685
Author(s):  
Xiangrui Kong ◽  
Xingrong Chu ◽  
Chongqian Chen ◽  
Yangang Wang ◽  
Peixing Liu ◽  
...  

The construction of a forming limit diagram (FLD) is a conventional approach to obtain limit strains and to evaluate the formability of sheet metal. Appropriate necking criteria should be applied to determine the forming limit curve (FLC) accurately. In recent years, deep research on the determination of the FLC has been carried out; meanwhile, several necking criteria have been proposed. However, the application of inappropriate necking criteria would cause deviations when determining FLCs. In this study, both Marciniak and Nakajima tests were carried out on the AA5086 aluminum sheet to make a comparative investigation of different necking criteria in the determination of FLCs. In the Marciniak test, four existing necking criteria were chosen to construct FLCs, and analyzed in detail. The well-performed time dependent and position dependent methods were selected for the Nakajima test. Meanwhile, the modified Wang method based on the height change of the adjacent points was proposed. The comparative results showed that the time and position dependent methods were relatively conservative in both experiments, while the modified Wang method could identify the onset of localized necking more accurately.


2021 ◽  
Vol 11 (9) ◽  
pp. 3774
Author(s):  
Sung-Ju Park ◽  
Kookhyun Kim

The ductile fracture of thin-shell structures was studied here using a localized necking model. The punching experiments for unstiffened and stiffened panels were compared with numerical predictions using a combined ductile fracture and localized necking model using shell elements. The plasticity and fracture model parameters of JIS G3131 SPHC steel were identified by performing calibration experiments on standard flat bars, notched tension, central hole tension, plane strain tension, and shear specimens. The plasticity beyond the onset of necking was modeled using the Swift hardening law. The damage indicator framework with a combined Hosford–Coulomb fracture model and the domain of shell-to-solid equivalence (DSSE) were adopted to characterize the fracture initiation. The model parameters were calibrated based on the loading paths to fracture initiation, which were extracted from a non-linear finite element (FE) analysis. The presented HC–DSSE model was validated using punch tests and was able to predict fracture initiation with good accuracy.


2021 ◽  
Vol 7 ◽  
Author(s):  
C. X. Chen ◽  
Y. F. Ge ◽  
W. Fang ◽  
X. Zhang ◽  
B. X. Liu ◽  
...  

A novel multilayer maraging/CoCrNi composite with good mechanical properties was successfully fabricated by a vacuum hot-rolling and aging treatment. The yield strength, tensile strength, uniform elongation, and fracture elongation reached 1,151, 1,380 MPa, 15.7, and 24% respectively, realizing the aim of synergistic strengthening–toughening by effectively improving the yield strength of the CoCrNi alloy and strain-hardening capacity of the maraging steel. The vacuum state, high rolling reduction ratio, and alloy element diffusion are beneficial in strengthening the clad interface. The good work-hardening capacity of the CoCrNi alloy compensates for the poor strain-softening behavior of the maraging steel, effectively delaying the premature localized necking of the multilayer composites. The strengthening–toughening mechanism of the multilayer maraging/CoCrNi composites is mainly attributed to the strong interface, nanoscale precipitation, and strain-induced twinning.


2021 ◽  
Vol 9 (2) ◽  
pp. 117
Author(s):  
Burak Can Cerik ◽  
Kangsu Lee ◽  
Joonmo Choung

This study compared the experimental test results on punch-loaded unstiffened and stiffened panels with numerical predictions using different localized necking modeling approaches with shell elements. The analytical models that were derived by Bressan–Williams–Hill (BWH) were used in their original form and extended version, which considers non-proportional loading paths while using the forming-severity concept and bending-induced suppression of through-thickness necking. The results suggest that the mesh size sensitivity depends on the punch geometry. Moreover, the inclusion of bending effects and the use of the forming-severity concept in the BWH criterion yielded improved estimations of fracture initiation with shell elements.


2020 ◽  
Vol 73 ◽  
pp. 102787 ◽  
Author(s):  
Burak Can Cerik ◽  
Sung-Ju Park ◽  
Joonmo Choung

Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1073 ◽  
Author(s):  
Niloufar Habibi ◽  
Veera Sundararaghavan ◽  
Ulrich Prahl ◽  
Ali Ramazani

The formability and failure behavior of transformation-induced plasticity (TRIP) steel blanks were investigated through various stress states. The forming limit diagram (FLD) at fracture was constructed both experimentally and numerically. Numerical studies were performed to evaluate the applicability of different damage criteria in predicting the FLD as well as complex cross-die deep drawing process. The fracture surface and numerical results reveal that the material failed in a different mode for different strain path. Therefore, the Tresca model, which is based on shear stress, accurately predicted the conditions where shear had a profound effect on the damage initiation, whereas Situ localized necking criterion could calculate the conditions in which localization was dominant.


Sign in / Sign up

Export Citation Format

Share Document