scholarly journals Analysis of Eigenfrequencies of a Circular Interface Delamination in Elastic Media Based on the Boundary Integral Equation Method

Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 38
Author(s):  
Mikhail V. Golub ◽  
Olga V. Doroshenko

The widespread of composite structures demands efficient numerical methods for the simulation dynamic behaviour of elastic laminates with interface delaminations with interacting faces. An advanced boundary integral equation method employing the Hankel transform of Green’s matrices is proposed for modelling wave scattering and analysis of the eigenfrequencies of interface circular partially closed delaminations between dissimilar media. A more general case of partially closed circular delamination is introduced using the spring boundary conditions with non-uniform spring stiffness distribution. The unknown crack opening displacement is expanded as Fourier series with respect to the angular coordinate and in terms of associated Legendre polynomials of the first kind via the radial coordinate. The problem is decomposed into a system of boundary integral equations and solved using the Bubnov-Galerkin method. The boundary integral equation method is compared with the meshless method and the published works for a homogeneous space with a circular open crack. The results of the numerical analysis showing the efficiency and the convergence of the method are demonstrated. The proposed method might be useful for damage identification employing the information on the eigenfrequencies estimated experimentally. Also, it can be extended for multi-layered composites with imperfect contact between sub-layers and multiple circular delaminations.

2012 ◽  
Vol 79 (3) ◽  
Author(s):  
Nobuki Kame ◽  
Tetsuya Kusakabe

The boundary integral equation method (BIEM) has been applied to the analysis of rupture propagation of nonplanar faults in an unbounded homogeneous elastic medium. Here, we propose an extended BIEM (XBIEM) that is applicable in an inhomogeneous bounded medium consisting of homogeneous sub-regions. In the formulation of the XBIEM, the interfaces of the sub-regions are regarded as extended boundaries upon which boundary integral equations are additionally derived. This has been originally known as a multiregion approach in the analysis of seismic wave propagation in the frequency domain and it is employed here for rupture dynamics interacting with medium interfaces in time domain. All of the boundary integral equations are fully coupled by imposing boundary conditions on the extended boundaries and then numerically solved after spatiotemporal discretization. This paper gives the explicit expressions of discretized stress kernels for anti-plane nonplanar problems and the numerical method for the implementation of the XBIEM, which are validated in two representative planar fault problems.


Sign in / Sign up

Export Citation Format

Share Document