scholarly journals Inverse Multiquadratic Functions as the Basis for the Rectangular Collocation Method to Solve the Vibrational Schrödinger Equation

Mathematics ◽  
2018 ◽  
Vol 6 (11) ◽  
pp. 253 ◽  
Author(s):  
Aditya Kamath ◽  
Sergei Manzhos

We explore the use of inverse multiquadratic (IMQ) functions as basis functions when solving the vibrational Schrödinger equation with the rectangular collocation method. The quality of the vibrational spectrum of formaldehyde (in six dimensions) is compared to that obtained using Gaussian basis functions when using different numbers of width-optimized IMQ functions. The effects of the ratio of the number of collocation points to the number of basis functions and of the choice of the IMQ exponent are studied. We show that the IMQ basis can be used with parameters where the IMQ function is not integrable. We find that the quality of the spectrum with IMQ basis functions is somewhat lower that that with a Gaussian basis when the basis size is large, and for a range of IMQ exponents. The IMQ functions are; however, advantageous when a small number of functions is used or with a small number of collocation points (e.g., when using square collocation).

Author(s):  
Aditya Kamath ◽  
Sergei Manzhos

We explore the use of inverse multiquadratic (IMQ) functions as basis functions when solving the vibrational Schrödinger equation with the rectangular collocation method. The quality of the vibrational spectrum of formaldehyde (in six dimensions) is compared to that obtained using Gaussian basis functions when using different numbers of width-optimized IMQ functions. The effects of the ratio of the number of collocation points to the number of basis functions and of the choice of the IMQ exponent are studied. We show that the IMQ basis can be used with parameters where the IMQ function is not integrable. We find that the quality of the spectrum with IMQ basis functions is somewhat lower that that with a Gaussian basis when the basis size is large and for a range of IMQ exponents. The IMQ functions are, however, advantageous when a small number of functions is used or with a small number of collocation points e.g. when using square collocation.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Anandaram Mandyam N

B-Splines as piecewise adaptation of Bernstein polynomials (aka, B-polys) are widely used as Ritz variational basis functions in solving many problems in the fields of quantum mechanics and atomic physics. In this paper they are used to solve the 1-D stationary Schrodinger equation (TISE) for a free quantum particle subject to a fixed domain length by using the Python software SPLIPY with different sets of computation parameters. In every case it was found that over 60 percent of energy levels had excellent accuracy thereby proving that the use of B-spline collocation is a preferred method.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Naravadee Nualsaard ◽  
Anirut Luadsong ◽  
Nitima Aschariyaphotha

In this paper, radial basis functions (RBFs) method was used to solve a fractional Black-Scholes-Schrodinger equation in an option pricing of financial problems. The RBFs method is applied in discretizing a spatial derivative process. The approximation of time fractional derivative is interpreted in the Caputo’s sense by a simple quadrature formula. This RBFs approach was theoretically proved with different problems of two numerical examples: time step arbitrage bubble case and time linear arbitrage bubble case. Then, the numerical results were compared with the semiclassical solution in case of fractional order close to 1. As a result, both numerical examples showed that the option prices from RBFs method satisfy the semiclassical solution.


Sign in / Sign up

Export Citation Format

Share Document