F-Metric, F-Contraction and Common Fixed-Point Theorems with Applications
In this paper, we noticed that the existence of fixed points of F-contractions, in F -metric space, can be ensured without the third condition (F3) imposed on the Wardowski function F : ( 0 , ∞ ) → R . We obtain fixed points as well as common fixed-point results for Reich-type F-contractions for both single and set-valued mappings in F -metric spaces. To show the usability of our results, we present two examples. Also, an application to functional equations is presented. The application shows the role of fixed-point theorems in dynamic programming, which is widely used in computer programming and optimization. Our results extend and generalize the previous results in the existing literature.