scholarly journals Left Regular Representation of Gyrogroups

Mathematics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 12
Author(s):  
Teerapong Suksumran

In this article, we examine a subspace L gyr ( G ) of the complex vector space, L ( G ) = { f : f   is   a   function   from   G to C } , where G is a nonassociative group-like structure called a gyrogroup. The space L gyr ( G ) arises as a representation space for G associated with the left regular representation, consisting of complex-valued functions invariant under certain permutations of G. In the case when G is finite, we prove that dim ( L gyr ( G ) ) = 1 | γ ( G ) | ∑ ρ ∈ γ ( G ) | Fix ( ρ ) | , where γ ( G ) is the subgroup of Sym ( G ) generated by a class of permutations of G and Fix ( ρ ) = { a ∈ G : ρ ( a ) = a } .

Author(s):  
Donald I. Cartwright ◽  
Wojciech MŁotkowski

AbstractLet Δ be a thick building of type Ã2, and let be its set of vertices. We study a commutative algebra of ‘averaging’ operators acting on the space of complex valued functions on . This algebra may be identified with a space of ‘biradial functions’ on , or with a convolution algebra of bi-K-invariant functions on G, if G is a sufficiently large group of ‘type-rotating’ automorphisms of Δ, and K is the subgroup of G fixing a given vertex. We describe the multiplicative functionals on and the corresponding spherical functions. We consider the C*-algebra induced by on l2, find its spectrum Σ, prove positive definiteness of a kernel kz for each z ∈ Σ, find explicity the spherical Plancherel formula for any group G of type rotating automorphisms, and discuss the irreducibility of the unitary representations appearing therein. For the class of buildings ΔJ arising from the groups ΓJ introduced in [2], this involves proving that the weak closure of is maximal abelian in the von Neumann algebra generated by the left regular representation of ΓJ.


2015 ◽  
Vol 26 (08) ◽  
pp. 1550064
Author(s):  
Bachir Bekka

Let Γ be a discrete group and 𝒩 a finite factor, and assume that both have Kazhdan's Property (T). For p ∈ [1, +∞), p ≠ 2, let π : Γ →O(Lp(𝒩)) be a homomorphism to the group O(Lp(𝒩)) of linear bijective isometries of the Lp-space of 𝒩. There are two actions πl and πr of a finite index subgroup Γ+ of Γ by automorphisms of 𝒩 associated to π and given by πl(g)x = (π(g) 1)*π(g)(x) and πr(g)x = π(g)(x)(π(g) 1)* for g ∈ Γ+ and x ∈ 𝒩. Assume that πl and πr are ergodic. We prove that π is locally rigid, that is, the orbit of π under O(Lp(𝒩)) is open in Hom (Γ, O(Lp(𝒩))). As a corollary, we obtain that, if moreover Γ is an ICC group, then the embedding g ↦ Ad (λ(g)) is locally rigid in O(Lp(𝒩(Γ))), where 𝒩(Γ) is the von Neumann algebra generated by the left regular representation λ of Γ.


Author(s):  
PIOTR ŚNIADY

We study the asymptotics of the reducible representations of the wreath products G≀Sq = Gq ⋊ Sq for large q, where G is a fixed finite group and Sq is the symmetric group in q elements; in particular for G = ℤ/2ℤ we recover the hyperoctahedral groups. We decompose such a reducible representation of G≀Sq as a sum of irreducible components (or, equivalently, as a collection of tuples of Young diagrams) and we ask what is the character of a randomly chosen component (or, what are the shapes of Young diagrams in a randomly chosen tuple). Our main result is that for a large class of representations, the fluctuations of characters (and fluctuations of the shape of the Young diagrams) are asymptotically Gaussian. The considered class consists of the representations for which the characters asymptotically almost factorize and it includes, among others, the left regular representation therefore we prove the analogue of Kerov's central limit theorem for wreath products.


1976 ◽  
Vol 28 (6) ◽  
pp. 1311-1319 ◽  
Author(s):  
L. J. Cummings ◽  
R. W. Robinson

A formula is derived for the dimension of a symmetry class of tensors (over a finite dimensional complex vector space) associated with an arbitrary finite permutation group G and a linear character of x of G. This generalizes a result of the first author [3] which solved the problem in case G is a cyclic group.


1976 ◽  
Vol 63 ◽  
pp. 163-171 ◽  
Author(s):  
Hisasi Morikawa

A holomorphic n × n-matric automorphic factor with respect to a lattice L in Cg means a system of holomorphic n × n-matrices {μα(z) | α ∈ L} such that


1994 ◽  
Vol 36 (3) ◽  
pp. 301-308 ◽  
Author(s):  
J. M. Burns ◽  
B. Goldsmith ◽  
B. Hartley ◽  
R. Sandling

In [6], Wong defined a quasi-permutation group of degree n to be a finite group G of automorphisms of an n-dimensional complex vector space such that every element of G has non-negative integral trace. The terminology derives from the fact that if G is a finite group of permutations of a set ω of size n, and we think of G as acting on the complex vector space with basis ω, then the trace of an element g ∈ G is equal to the number of points of ω fixed by g. In [6] and [7], Wong studied the extent to which some facts about permutation groups generalize to the quasi-permutation group situation. Here we investigate further the analogy between permutation groups and quasipermutation groups by studying the relation between the minimal degree of a faithful permutation representation of a given finite group G and the minimal degree of a faithful quasi-permutation representation. We shall often prefer to work over the rational field rather than the complex field.


Sign in / Sign up

Export Citation Format

Share Document