scholarly journals On the Diophantine Equation z(n) = (2 − 1/k)n Involving the Order of Appearance in the Fibonacci Sequence

Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 124 ◽  
Author(s):  
Eva Trojovská

Let ( F n ) n ≥ 0 be the sequence of the Fibonacci numbers. The order (or rank) of appearance z ( n ) of a positive integer n is defined as the smallest positive integer m such that n divides F m . In 1975, Sallé proved that z ( n ) ≤ 2 n , for all positive integers n. In this paper, we shall solve the Diophantine equation z ( n ) = ( 2 − 1 / k ) n for positive integers n and k.

Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1813
Author(s):  
S. Subburam ◽  
Lewis Nkenyereye ◽  
N. Anbazhagan ◽  
S. Amutha ◽  
M. Kameswari ◽  
...  

Consider the Diophantine equation yn=x+x(x+1)+⋯+x(x+1)⋯(x+k), where x, y, n, and k are integers. In 2016, a research article, entitled – ’power values of sums of products of consecutive integers’, primarily proved the inequality n= 19,736 to obtain all solutions (x,y,n) of the equation for the fixed positive integers k≤10. In this paper, we improve the bound as n≤ 10,000 for the same case k≤10, and for any fixed general positive integer k, we give an upper bound depending only on k for n.


2016 ◽  
Vol 67 (1) ◽  
pp. 41-46
Author(s):  
Pavel Trojovský

Abstract Let k ≥ 1 and denote (Fk,n)n≥0, the k-Fibonacci sequence whose terms satisfy the recurrence relation Fk,n = kFk,n−1 +Fk,n−2, with initial conditions Fk,0 = 0 and Fk,1 = 1. In the same way, the k-Lucas sequence (Lk,n)n≥0 is defined by satisfying the same recurrence relation with initial values Lk,0 = 2 and Lk,1 = k. These sequences were introduced by Falcon and Plaza, who showed many of their properties, too. In particular, they proved that Fk,n+1 + Fk,n−1 = Lk,n, for all k ≥ 1 and n ≥ 0. In this paper, we shall prove that if k ≥ 1 and $F_{k,n + 1}^s + F_{k,n - 1}^s \in \left( {L_{k,m} } \right)_{m \ge 1} $ for infinitely many positive integers n, then s =1.


2013 ◽  
Vol 89 (2) ◽  
pp. 316-321 ◽  
Author(s):  
MOU JIE DENG

AbstractLet $(a, b, c)$ be a primitive Pythagorean triple satisfying ${a}^{2} + {b}^{2} = {c}^{2} . $ In 1956, Jeśmanowicz conjectured that for any given positive integer $n$ the only solution of $\mathop{(an)}\nolimits ^{x} + \mathop{(bn)}\nolimits ^{y} = \mathop{(cn)}\nolimits ^{z} $ in positive integers is $x= y= z= 2. $ In this paper, for the primitive Pythagorean triple $(a, b, c)= (4{k}^{2} - 1, 4k, 4{k}^{2} + 1)$ with $k= {2}^{s} $ for some positive integer $s\geq 0$, we prove the conjecture when $n\gt 1$ and certain divisibility conditions are satisfied.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1047
Author(s):  
Pavel Trojovský ◽  
Štěpán Hubálovský

Let k ≥ 1 be an integer and denote ( F k , n ) n as the k-Fibonacci sequence whose terms satisfy the recurrence relation F k , n = k F k , n − 1 + F k , n − 2 , with initial conditions F k , 0 = 0 and F k , 1 = 1 . In the same way, the k-Lucas sequence ( L k , n ) n is defined by satisfying the same recursive relation with initial values L k , 0 = 2 and L k , 1 = k . The sequences ( F k , n ) n ≥ 0 and ( L k , n ) n ≥ 0 were introduced by Falcon and Plaza, who derived many of their properties. In particular, they proved that F k , n 2 + F k , n + 1 2 = F k , 2 n + 1 and F k , n + 1 2 − F k , n − 1 2 = k F k , 2 n , for all k ≥ 1 and n ≥ 0 . In this paper, we shall prove that if k > 1 and F k , n s + F k , n + 1 s ∈ ( F k , m ) m ≥ 1 for infinitely many positive integers n, then s = 2 . Similarly, that if F k , n + 1 s − F k , n − 1 s ∈ ( k F k , m ) m ≥ 1 holds for infinitely many positive integers n, then s = 1 or s = 2 . This generalizes a Marques and Togbé result related to the case k = 1 . Furthermore, we shall solve the Diophantine equations F k , n = L k , m , F k , n = F n , k and L k , n = L n , k .


2010 ◽  
Vol 81 (2) ◽  
pp. 177-185 ◽  
Author(s):  
BO HE ◽  
ALAIN TOGBÉ

AbstractLet a, b, c, x and y be positive integers. In this paper we sharpen a result of Le by showing that the Diophantine equation has at most two positive integer solutions (m,n) satisfying min (m,n)>1.


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2912
Author(s):  
Eva Trojovská ◽  
Venkatachalam Kandasamy

Let (Fn)n be the sequence of Fibonacci numbers. The order of appearance (in the Fibonacci sequence) of a positive integer n is defined as z(n)=min{k≥1:n∣Fk}. Very recently, Trojovská and Venkatachalam proved that, for any k≥1, the number z(n) is divisible by 2k, for almost all integers n≥1 (in the sense of natural density). Moreover, they posed a conjecture that implies that the same is true upon replacing 2k by any integer m≥1. In this paper, in particular, we prove this conjecture.


2012 ◽  
Vol 08 (03) ◽  
pp. 813-821 ◽  
Author(s):  
ZHONGFENG ZHANG ◽  
PINGZHI YUAN

Let a, b, c be integers. In this paper, we prove the integer solutions of the equation axy + byz + czx = 0 satisfy max {|x|, |y|, |z|} ≤ 2 max {a, b, c} when a, b, c are odd positive integers, and when a = b = 1, c = -1, the positive integer solutions of the equation satisfy max {x, y, z} < exp ( exp ( exp (5))).


2014 ◽  
Vol 90 (1) ◽  
pp. 9-19 ◽  
Author(s):  
TAKAFUMI MIYAZAKI ◽  
NOBUHIRO TERAI

AbstractLet $m$, $a$, $c$ be positive integers with $a\equiv 3, 5~({\rm mod} \hspace{0.334em} 8)$. We show that when $1+ c= {a}^{2} $, the exponential Diophantine equation $\mathop{({m}^{2} + 1)}\nolimits ^{x} + \mathop{(c{m}^{2} - 1)}\nolimits ^{y} = \mathop{(am)}\nolimits ^{z} $ has only the positive integer solution $(x, y, z)= (1, 1, 2)$ under the condition $m\equiv \pm 1~({\rm mod} \hspace{0.334em} a)$, except for the case $(m, a, c)= (1, 3, 8)$, where there are only two solutions: $(x, y, z)= (1, 1, 2), ~(5, 2, 4). $ In particular, when $a= 3$, the equation $\mathop{({m}^{2} + 1)}\nolimits ^{x} + \mathop{(8{m}^{2} - 1)}\nolimits ^{y} = \mathop{(3m)}\nolimits ^{z} $ has only the positive integer solution $(x, y, z)= (1, 1, 2)$, except if $m= 1$. The proof is based on elementary methods and Baker’s method.


2013 ◽  
Vol 94 (1) ◽  
pp. 50-105 ◽  
Author(s):  
CHRISTIAN ELSHOLTZ ◽  
TERENCE TAO

AbstractFor any positive integer $n$, let $f(n)$ denote the number of solutions to the Diophantine equation $$\begin{eqnarray*}\frac{4}{n} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}\end{eqnarray*}$$ with $x, y, z$ positive integers. The Erdős–Straus conjecture asserts that $f(n)\gt 0$ for every $n\geq 2$. In this paper we obtain a number of upper and lower bounds for $f(n)$ or $f(p)$ for typical values of natural numbers $n$ and primes $p$. For instance, we establish that $$\begin{eqnarray*}N\hspace{0.167em} {\mathop{\log }\nolimits }^{2} N\ll \displaystyle \sum _{p\leq N}f(p)\ll N\hspace{0.167em} {\mathop{\log }\nolimits }^{2} N\log \log N.\end{eqnarray*}$$ These upper and lower bounds show that a typical prime has a small number of solutions to the Erdős–Straus Diophantine equation; small, when compared with other additive problems, like Waring’s problem.


2009 ◽  
Vol 05 (06) ◽  
pp. 1117-1128 ◽  
Author(s):  
FADWA S. ABU MURIEFAH ◽  
FLORIAN LUCA ◽  
SAMIR SIKSEK ◽  
SZABOLCS TENGELY

In this paper, we study the Diophantine equation x2 + C = 2yn in positive integers x,y with gcd (x,y) = 1, where n ≥ 3 and C is a positive integer. If C ≡ 1 (mod 4), we give a very sharp bound for prime values of the exponent n; our main tool here is the result on existence of primitive divisors in Lehmer sequences due to Bilu, Hanrot and Voutier. We illustrate our approach by solving completely the equations x2 + 17a1 = 2yn, x2 + 5a113a2 = 2yn and x2 + 3a111a2 = 2yn.


Sign in / Sign up

Export Citation Format

Share Document