scholarly journals Ore Extensions for the Sweedler’s Hopf Algebra H4

Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1293
Author(s):  
Shilin Yang ◽  
Yongfeng Zhang

The aim of this paper is to classify all Hopf algebra structures on the quotient of Ore extensions H4[z;σ] of automorphism type for the Sweedler′s 4-dimensional Hopf algebra H4. Firstly, we calculate all equivalent classes of twisted homomorphisms (σ,J) for H4. Then we give the classification of all bialgebra (Hopf algebra) structures on the quotients of H4[z;σ] up to isomorphism.


2021 ◽  
Author(s):  
◽  
Aaron Armour

<p><b>The algebraic and geometric classification of k-algbras, of dimension fouror less, was started by Gabriel in “Finite representation type is open” [12].</b></p> <p>Several years later Mazzola continued in this direction with his paper “Thealgebraic and geometric classification of associative algebras of dimensionfive” [21]. The problem we attempt in this thesis, is to extend the resultsof Gabriel to the setting of super (or Z2-graded) algebras — our main effortsbeing devoted to the case of superalgebras of dimension four. Wegive an algebraic classification for superalgebras of dimension four withnon-trivial Z2-grading. By combining these results with Gabriel’s we obtaina complete algebraic classification of four dimensional superalgebras.</p> <p>This completes the classification of four dimensional Yetter-Drinfeld modulealgebras over Sweedler’s Hopf algebra H4 given by Chen and Zhangin “Four dimensional Yetter-Drinfeld module algebras over H4” [9]. Thegeometric classification problem leads us to define a new variety, Salgn —the variety of n-dimensional superalgebras—and study some of its properties.</p> <p>The geometry of Salgn is influenced by the geometry of the varietyAlgn yet it is also more complicated, an important difference being thatSalgn is disconnected. While we make significant progress on the geometricclassification of four dimensional superalgebras, it is not complete. Wediscover twenty irreducible components of Salg4 — however there couldbe up to two further irreducible components.</p>



2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Luis Alfonso Salcedo Plazas

In this article we relate some Hopf algebra structures over Ore extensions and over skew PBW extensions ofa Hopf algebra. These relations are illustrated with examples. We also show that Hopf Ore extensions andgeneralized Hopf Ore extensions are Hopf skew PBW extensions.



2010 ◽  
Vol 09 (01) ◽  
pp. 11-15 ◽  
Author(s):  
DAIJIRO FUKUDA

This paper contributes to the classification of finite dimensional Hopf algebras. It is shown that every Hopf algebra of dimension 30 over an algebraically closed field of characteristic zero is semisimple and thus isomorphic to a group algebra or the dual of a group algebra.



2000 ◽  
Vol 129 (2) ◽  
pp. 371-380 ◽  
Author(s):  
Fred Van Oystaeyen ◽  
Yinhuo Zhang


2016 ◽  
Vol 45 (3) ◽  
pp. 1323-1346 ◽  
Author(s):  
Susan Elle
Keyword(s):  


2006 ◽  
Vol 05 (03) ◽  
pp. 361-377 ◽  
Author(s):  
CLAUDE CIBILS

We classify the twisted tensor products of a finite set algebra with a two elements set algebra using colored quivers obtained through considerations analogous to Ore extensions. This provides also a classification of entwining structures between a finite set algebra and the grouplike coalgebra on two elements. The resulting 2-nilpotent algebras have particular features with respect to Hochschild (co)homology and cyclic homology.



2014 ◽  
Vol 34 (2) ◽  
pp. 252-262
Author(s):  
Haijun CAO ◽  
Fang LI ◽  
Mianmian ZHANG
Keyword(s):  


2021 ◽  
Author(s):  
◽  
Aaron Armour

<p><b>The algebraic and geometric classification of k-algbras, of dimension fouror less, was started by Gabriel in “Finite representation type is open” [12].</b></p> <p>Several years later Mazzola continued in this direction with his paper “Thealgebraic and geometric classification of associative algebras of dimensionfive” [21]. The problem we attempt in this thesis, is to extend the resultsof Gabriel to the setting of super (or Z2-graded) algebras — our main effortsbeing devoted to the case of superalgebras of dimension four. Wegive an algebraic classification for superalgebras of dimension four withnon-trivial Z2-grading. By combining these results with Gabriel’s we obtaina complete algebraic classification of four dimensional superalgebras.</p> <p>This completes the classification of four dimensional Yetter-Drinfeld modulealgebras over Sweedler’s Hopf algebra H4 given by Chen and Zhangin “Four dimensional Yetter-Drinfeld module algebras over H4” [9]. Thegeometric classification problem leads us to define a new variety, Salgn —the variety of n-dimensional superalgebras—and study some of its properties.</p> <p>The geometry of Salgn is influenced by the geometry of the varietyAlgn yet it is also more complicated, an important difference being thatSalgn is disconnected. While we make significant progress on the geometricclassification of four dimensional superalgebras, it is not complete. Wediscover twenty irreducible components of Salg4 — however there couldbe up to two further irreducible components.</p>



2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Muhammad Naseer Khan ◽  
Ahmed Munir ◽  
Muhammad Arshad ◽  
Ahmed Alsanad ◽  
Suheer Al-Hadhrami

This study induced a weak Hopf algebra from the path coalgebra of a weak Hopf quiver. Moreover, it gave a quiver representation of the said algebra which gives rise to the various structures of the so-called weak Hopf algebra through the quiver. Furthermore, it also showed the canonical representation for each weak Hopf quiver. It was further observed that a Cayley digraph of a Clifford monoid can be embedded in its corresponding weak Hopf quiver of a Clifford monoid. This lead to the development of the foundation structures of weak Hopf algebra. Such quiver representation is useful for the classification of its path coalgebra. Additionally, some structures of module theory of algebra were also given. Such algebras can also be applied for obtaining the solutions of “quantum Yang–Baxter equation” that has many applications in the dynamical systems for finding interesting results.



Author(s):  
Ilya Shapiro ◽  

We examine the cyclic homology of the monoidal category of modules over a finite dimensional Hopf algebra, motivated by the need to demonstrate that there is a difference between the recently introduced mixed anti-Yetter-Drinfeld contramodules and the usual stable anti-Yetter-Drinfeld contramodules. Namely, we show that Sweedler's Hopf algebra provides an example where mixed complexes in the category of stable anti-Yetter-Drinfeld contramodules (previously studied) are not equivalent, as differential graded categories to the category of mixed anti-Yetter-Drinfeld contramodules (recently introduced).



Sign in / Sign up

Export Citation Format

Share Document