scholarly journals Dynamics of a SIR Epidemic Model of Childhood Diseases with a Saturated Incidence Rate: Continuous Model and Its Nonstandard Finite Difference Discretization

Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1459
Author(s):  
Isnani Darti ◽  
Agus Suryanto

A SIR epidemic model that describes the dynamics of childhood disease with a saturated incidence rate and vaccination program at a constant rate was investigated. For the continuous model we first show its basic properties, namely, the non-negativity and boundedness of solutions. Then we investigate the existence and both local and global stability of the equilibrium points. It was found that the existence and stability properties of equilibrium points fully determined the basic reproduction number. We also propose and analyze a discrete-time analogue of the continuous childhood diseases by applying a nonstandard finite difference method. It is shown that our discrete model preserves the dynamical properties of the corresponding continuous model, such as the positivity solutions, the population conservation law, the existence of equilibrium points and their global stability properties.

Author(s):  
Abdelhadi Abta ◽  
Salahaddine Boutayeb ◽  
Hassan Laarabi ◽  
Mostafa Rachik ◽  
Hamad Talibi Alaoui

2010 ◽  
Vol 15 (3) ◽  
pp. 299-306 ◽  
Author(s):  
A. Kaddar

We formulate a delayed SIR epidemic model by introducing a latent period into susceptible, and infectious individuals in incidence rate. This new reformulation provides a reasonable role of incubation period on the dynamics of SIR epidemic model. We show that if the basic reproduction number, denoted, R0, is less than unity, the diseasefree equilibrium is locally asymptotically stable. Moreover, we prove that if R0 > 1, the endemic equilibrium is locally asymptotically stable. In the end some numerical simulations are given to compare our model with existing model.


Author(s):  
Miled El Hajji

In the present work, a fractional-order differential equation based on the Susceptible-Infected- Recovered (SIR) model with nonlinear incidence rate in a continuous reactor is proposed. A profound qualitative analysis is given. The analysis of the local and global stability of equilibrium points is carried out. It is proved that if the basic reproduction number R > 1 then the disease-persistence (endemic) equilibrium is globally asymptotically stable. However, if R ≤ 1, then the disease-free equilibrium is globally asymptotically stable. Finally, some numerical tests are done in order to validate the obtained results.


Sign in / Sign up

Export Citation Format

Share Document