numerical flux
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 21)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 231 ◽  
pp. 105165
Author(s):  
Tomohiro Mamashita ◽  
Keiichi Kitamura ◽  
Takashi Minoshima
Keyword(s):  

2021 ◽  
Vol 13 (6) ◽  
pp. 1116-1121
Author(s):  
M. E. Ladonkina ◽  
O. A. Nekliudova ◽  
V. F. Tishkin

Author(s):  
U. S. Vevek ◽  
B. Zang ◽  
T. H. New

AbstractA hybrid numerical flux scheme is proposed by adapting the carbuncle-free modified Harten-Lax-van Leer contact (HLLCM) scheme to smoothly revert to the Harten-Lax-van Leer contact (HLLC) scheme in regions of shear. This hybrid scheme, referred to as the HLLCT scheme, employs a novel, velocity-based shear sensor. In contrast to the non-local pressure-based shock sensors often used in carbuncle cures, the proposed shear sensor can be computed in a localized manner meaning that the HLLCT scheme can be easily introduced into existing codes without having to implement additional data structures. Through numerical experiments, it is shown that the HLLCT scheme is able to resolve shear layers accurately without succumbing to the shock instability.


Author(s):  
Chanyoung Park ◽  
Samaun Nili ◽  
Justin Mathew ◽  
Frederick Ouellet ◽  
Rahul Koneru ◽  
...  

Abstract Uncertainty quantification (UQ) is an important step in the verification and validation of scientific computing. Validation is often inconclusive when uncertainty is larger than an acceptable range for both simulation and experiment. Therefore, uncertainty reduction (UR) is important to achieve meaningful validation. A unique approach in this paper is to separate model error from uncertainty such that UR can reveal the model error. This paper aims to share lessons learned from UQ and UR of a horizontal shock tube simulation, whose goal is to validate the particle drag force model for the compressible multiphase flow. Firstly, simulation UQ revealed the inconsistency in simulation predictions due to the numerical flux scheme, which was clearly shown using the parametric design of experiments. By improving the numerical flux scheme, the uncertainty due to inconsistency was removed, while increasing the overall prediction error. Secondly, the mismatch between the geometry of the experiments and the simplified 1D simulation model was identified as a lack of knowledge. After modifying simulation conditions and experiments, it turned out that the error due to the mismatch was small, which was unexpected based on expert opinions. Lastly, the uncertainty in the initial volume fraction of particles was reduced based on rigorous UQ. All these UR measures worked together to reveal the hidden modeling error in the simulation predictions, which can lead to a model improvement in the future. We summarized the lessons learned from this exercise in terms of empty success, useful failure, and deceptive success.


Geophysics ◽  
2020 ◽  
Vol 85 (5) ◽  
pp. T257-T273
Author(s):  
Xijun He ◽  
Dinghui Yang ◽  
Xiao Ma ◽  
Chujun Qiu

We have developed a new discontinuous Galerkin (DG) method to solve the 2D seismic wave equations in isotropic and anisotropic media. This method uses a modified numerical flux that is based on a linear combination of the Godunov and the centered fluxes. A weighting factor is introduced in this modified numerical flux that is expected to be optimized to some extent. Through the investigations on the considerations of numerical stability, numerical dispersion, and dissipation errors, we develop a possible choice of optimal weighting factor. Several numerical experiments confirm the effectiveness of the proposed method. We evaluate a convergence test based on cosine wave propagation without the source term, which shows that the numerical errors in the modified flux-based DG method and the Godunov-flux-based method are quite similar. However, the improved computational efficiency of the modified flux over the Godunov flux can be demonstrated only at a small sampling rate. Then, we apply the proposed method to simulate the wavefields in acoustic, elastic, and anisotropic media. The numerical results show that the modified DG method produces small numerical dispersion and obtains results in good agreement with the reference solutions. Numerical wavefield simulations of the Marmousi model show that the proposed method also is suitable for the heterogeneous case.


2020 ◽  
Vol 56 (7) ◽  
Author(s):  
B. Sridharan ◽  
Dinakar Gurivindapalli ◽  
Soumendra Nath Kuiry ◽  
Vijay Kisan Mali ◽  
N. Nithila Devi ◽  
...  

2020 ◽  
Author(s):  
Chang Liu ◽  
Kun Xu

Abstract The flow regime of micro flow varies from collisionless regime to hydrodynamic regime according to the Knudsen number. On the kinetic scale, the dynamics of micro flow can be described by the linearized kinetic equation. In the continuum regime, hydrodynamic equations such as linearized Navier-Stokes equations and Euler equations can be derived from the linearized kinetic equation by the Chapman-Enskog asymptotic analysis. In this paper, based on the linearized kinetic equation we are going to propose a unified gas kinetic scheme scheme (UGKS) for micro flow simulation, which is an effective multiscale scheme in the whole micro flow regime. The important methodology of UGKS is the following. Firstly, the evolution of microscopic distribution function is coupled with the evolution of macroscopic flow quantities. Secondly, the numerical flux of UGKS is constructed based on the integral solution of kinetic equation, which provides a genuinely multiscale and multidimensional numerical flux. The UGKS recovers the linear kinetic solution in the rarefied regime, and converges to the linear hydrodynamic solution in the continuum regime. An outstanding feature of UGKS is its capability of capturing the accurate viscous solution even when the cell size is much larger than the kinetic kinetic length scale, such as the capturing of the viscous boundary layer with a cell size ten times larger than the particle mean free path. Such a multiscale property is called unified preserving (UP) which has been studied in \cite{guo2019unified}. In this paper, we are also going to give a mathematical proof for the UP property of UGKS.


Sign in / Sign up

Export Citation Format

Share Document