scholarly journals Well-Balanced High-Order Discontinuous Galerkin Methods for Systems of Balance Laws

Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 15
Author(s):  
Ernesto Guerrero Fernández ◽  
Cipriano Escalante ◽  
Manuel J. Castro Díaz

This work introduces a general strategy to develop well-balanced high-order Discontinuous Galerkin (DG) numerical schemes for systems of balance laws. The essence of our approach is a local projection step that guarantees the exactly well-balanced character of the resulting numerical method for smooth stationary solutions. The strategy can be adapted to some well-known different time marching DG discretisations. Particularly, in this article, Runge–Kutta DG and ADER DG methods are studied. Additionally, a limiting procedure based on a modified WENO approach is described to deal with the spurious oscillations generated in the presence of non-smooth solutions, keeping the well-balanced properties of the scheme intact. The resulting numerical method is then exactly well-balanced and high-order in space and time for smooth solutions. Finally, some numerical results are depicted using different systems of balance laws to show the performance of the introduced numerical strategy.

Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1799
Author(s):  
Irene Gómez-Bueno ◽  
Manuel Jesús Castro Díaz ◽  
Carlos Parés ◽  
Giovanni Russo

In some previous works, two of the authors introduced a technique to design high-order numerical methods for one-dimensional balance laws that preserve all their stationary solutions. The basis of these methods is a well-balanced reconstruction operator. Moreover, they introduced a procedure to modify any standard reconstruction operator, like MUSCL, ENO, CWENO, etc., in order to be well-balanced. This strategy involves a non-linear problem at every cell at every time step that consists in finding the stationary solution whose average is the given cell value. In a recent paper, a fully well-balanced method is presented where the non-linear problems to be solved in the reconstruction procedure are interpreted as control problems. The goal of this paper is to introduce a new technique to solve these local non-linear problems based on the application of the collocation RK methods. Special care is put to analyze the effects of computing the averages and the source terms using quadrature formulas. A general technique which allows us to deal with resonant problems is also introduced. To check the efficiency of the methods and their well-balance property, they have been applied to a number of tests, ranging from easy academic systems of balance laws consisting of Burgers equation with some non-linear source terms to the shallow water equations—without and with Manning friction—or Euler equations of gas dynamics with gravity effects.


2021 ◽  
Vol 394 ◽  
pp. 125820
Author(s):  
Irene Gómez-Bueno ◽  
Manuel J. Castro ◽  
Carlos Parés

2019 ◽  
Vol 37 (2) ◽  
pp. 199-217
Author(s):  
Paul Castillo ◽  
Sergio Gómez

Using the von Neumann analysis as a theoretical tool, an analysisof the stability conditions of some explicit time marching schemes, in com-bination with the spatial discretizationLocal Discontinuous Galerkin(LDG)and high order approximations, is presented. The stabilityconstant, CFL(Courant-Friedrichs-Lewy), is studied as a function of theLDG parametersand the approximation degree. A series of numerical experiments is carriedout to validate the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document