scholarly journals On Source Terms and Boundary Conditions Using Arbitrary High Order Discontinuous Galerkin Schemes

Author(s):  
Michael Dumbser ◽  
Claus-Dieter Munz

On Source Terms and Boundary Conditions Using Arbitrary High Order Discontinuous Galerkin SchemesThis article is devoted to the discretization of source terms and boundary conditions using discontinuous Galerkin schemes with an arbitrary high order of accuracy in space and time for the solution of hyperbolic conservation laws on unstructured triangular meshes. The building block of the method is a particular numerical flux function at the element interfaces based on the solution of Generalized Riemann Problems (GRPs) with piecewise polynomial initial data. The solution of the generalized Riemann problem, originally introduced by Toro and Titarev in a finite volume context, provides simultaneously a numerical flux function as well as a time integration method. The resulting scheme is extremely local since it integrates the PDE from one time step to the successive one in a single step using only information from the direct side neighbors. Since source terms are directly incorporated into the numerical flux via the solution of the GRP, our very high order accurate method is also able to maintain very well smooth steady-state solutions of PDEs with source terms, similar to the so-called well-balanced schemes which are usually specially designed for this purpose. Boundary conditions are imposed solving inverse generalized Riemann problems. Furthermore, we show numerical evidence proving that by using very high order schemes together with high order polynomial representations of curved boundaries, high quality solutions can be obtained on very coarse meshes.

Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1799
Author(s):  
Irene Gómez-Bueno ◽  
Manuel Jesús Castro Díaz ◽  
Carlos Parés ◽  
Giovanni Russo

In some previous works, two of the authors introduced a technique to design high-order numerical methods for one-dimensional balance laws that preserve all their stationary solutions. The basis of these methods is a well-balanced reconstruction operator. Moreover, they introduced a procedure to modify any standard reconstruction operator, like MUSCL, ENO, CWENO, etc., in order to be well-balanced. This strategy involves a non-linear problem at every cell at every time step that consists in finding the stationary solution whose average is the given cell value. In a recent paper, a fully well-balanced method is presented where the non-linear problems to be solved in the reconstruction procedure are interpreted as control problems. The goal of this paper is to introduce a new technique to solve these local non-linear problems based on the application of the collocation RK methods. Special care is put to analyze the effects of computing the averages and the source terms using quadrature formulas. A general technique which allows us to deal with resonant problems is also introduced. To check the efficiency of the methods and their well-balance property, they have been applied to a number of tests, ranging from easy academic systems of balance laws consisting of Burgers equation with some non-linear source terms to the shallow water equations—without and with Manning friction—or Euler equations of gas dynamics with gravity effects.


2013 ◽  
Vol 21 (01) ◽  
pp. 1250019
Author(s):  
ANDREAS RICHTER ◽  
EVA BRUSSIES ◽  
JÖRG STILLER

A high-order interior penalty discontinuous Galerkin method for the compressible Navier–Stokes equations is introduced, which is a modification of the scheme given by Hartmann and Houston. In this paper we investigate the influence of penalization and boundary treatment on accuracy. By observing eigenvalues and condition numbers, a lower bound for the penalization term μ was found, whereas convergence studies depict reasonable upper bounds and a linear dependence on the critical time step size. By investigating conservation properties we demonstrate that different boundary treatments influence the accuracy by several orders of magnitude, and propose reasonable strategies to improve conservation properties.


2011 ◽  
Vol 9 (2) ◽  
pp. 441-480 ◽  
Author(s):  
Shuangzhang Tu ◽  
Gordon W. Skelton ◽  
Qing Pang

AbstractThis paper presents a novel high-order space-time method for hyperbolic conservation laws. Two important concepts, the staggered space-time mesh of the space-time conservation element/solution element (CE/SE) method and the local discontinuous basis functions of the space-time discontinuous Galerkin (DG) finite element method, are the two key ingredients of the new scheme. The staggered space-time mesh is constructed using the cell-vertex structure of the underlying spatial mesh. The universal definitions of CEs and SEs are independent of the underlying spatial mesh and thus suitable for arbitrarily unstructured meshes. The solution within each physical time step is updated alternately at the cell level and the vertex level. For this solution updating strategy and the DG ingredient, the new scheme here is termed as the discontinuous Galerkin cell-vertex scheme (DG-CVS). The high order of accuracy is achieved by employing high-order Taylor polynomials as the basis functions inside each SE. The present DG-CVS exhibits many advantageous features such as Riemann-solver-free, high-order accuracy, point-implicitness, compactness, and ease of handling boundary conditions. Several numerical tests including the scalar advection equations and compressible Euler equations will demonstrate the performance of the new method.


Sign in / Sign up

Export Citation Format

Share Document