scholarly journals Fixed Point Theorems for Nonexpansive Mappings under Binary Relations

Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2059
Author(s):  
Aftab Alam ◽  
Reny George ◽  
Mohammad Imdad ◽  
Md Hasanuzzaman

In the present article, we establish relation-theoretic fixed point theorems in a Banach space, satisfying the Opial condition, using the R-Krasnoselskii sequence. We observe that graphical versions (Fixed Point Theory Appl. 2015:49 (2015) 6 pp.) and order-theoretic versions (Fixed Point Theory Appl. 2015:110 (2015) 7 pp.) of such results can be extended to a transitive binary relation.


Symmetry ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 29
Author(s):  
Priyam Chakraborty ◽  
Binayak S. Choudhury ◽  
Manuel De la Sen

In recent times there have been two prominent trends in metric fixed point theory. One is the use of weak contractive inequalities and the other is the use of binary relations. Combining the two trends, in this paper we establish a relation-theoretic fixed point result for a mapping which is defined on a metric space with an arbitrary binary relation and satisfies a weak contractive inequality for any pair of points whenever the pair of points is related by a given relation. The uniqueness is obtained by assuming some extra conditions. The metric space is assumed to be R -complete. We use R -continuity of functions. The property of local T-transitivity of the relation R is used in the main theorem. There is an illustrative example. An existing fixed point result is generalized through the present work. We use a method in the proof of our main theorem which is a blending of relation-theoretic and analytic approaches.



2018 ◽  
Vol 85 (3-4) ◽  
pp. 396
Author(s):  
Gopi Prasad ◽  
Ramesh Chandra Dimri

<p>In this paper, we establish coincidence point theorems for contractive mappings, using locally g-transitivity of binary relation in new generalized metric spaces. In the present results, we use some relation theoretic analogues of standard metric notions such as continuity, completeness and regularity. In this way our results extend, modify and generalize some recent fixed point theorems, for instance, Karapinar et al [J. Fixed Point Theory Appl. 18(2016) 645-671], Alam and Imdad [Fixed Point Theory, in press].</p>



2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Chakkrid Klin-eam ◽  
Cholatis Suanoom

Fixed-point theory in complex valued metric spaces has greatly developed in recent times. In this paper, we prove certain common fixed-point theorems for two single-valued mappings in such spaces. The mappings we consider here are assumed to satisfy certain metric inequalities with generalized fixed-point theorems due to Rouzkard and Imdad (2012). This extends and subsumes many results of other authors which were obtained for mappings on complex-valued metric spaces.



2005 ◽  
Vol 2005 (5) ◽  
pp. 789-801
Author(s):  
Bijendra Singh ◽  
Shishir Jain ◽  
Shobha Jain

Rhoades (1996) proved a fixed point theorem in a boundedD-metric space for a contractive self-map with applications. Here we establish a more general fixed point theorem in an unboundedD-metric space, for two self-maps satisfying a general contractive condition with a restricted domain ofxandy. This has been done by using the notion of semicompatible maps inD-metric space. These results generalize and improve the results of Rhoades (1996), Dhage et al. (2000), and Veerapandi and Rao (1996). These results also underline the necessity and importance of semicompatibility in fixed point theory ofD-metric spaces. All the results of this paper are new.



Mathematics ◽  
2018 ◽  
Vol 6 (7) ◽  
pp. 117 ◽  
Author(s):  
Wei-Shih Du ◽  
Erdal Karapınar ◽  
Zhenhua He


In this paper, we introduce the notion of generalized cyclic contraction pair with transitive mapping in partial b-metric spaces. Also, we establish some fixed point theorems for this contraction pair. Our results generalize and improve the result of Oratai Yamaod, Wutiphol Sintunavarat and Yeol Je Cho (Fixed Point Theory App. 2015:164) in partial-b-metric spaces.



2003 ◽  
Vol 2003 (5) ◽  
pp. 311-324 ◽  
Author(s):  
W. A. Kirk

This is a brief survey of the use of transfinite induction in metric fixed-point theory. Among the results discussed in some detail is the author's 1989 result on directionally nonexpansive mappings (which is somewhat sharpened), a result of Kulesza and Lim giving conditions when countable compactness implies compactness, a recent inwardness result for contractions due to Lim, and a recent extension of Caristi's theorem due to Saliga and the author. In each instance, transfinite methods seem necessary.



2017 ◽  
Vol 33 (3) ◽  
pp. 265-274
Author(s):  
MARGARETA-ELIZA BALAZS ◽  

Starting from the results, established in [Albu, M., A fixed point theorem of Maia-Perov type. Studia Univ. Babes¸- Bolyai Math., 23 (1978), No. 1, 76–79] and [Mures¸an, V., Basic problem for Maia-Perov’s fixed point theorem, Seminar on Fixed Point Theory, Babes¸ Bolyai Univ., Cluj-Napoca, (1988), Preprint Nr. 3, pp. 43–48] where fixed point theorems of Maia-Perov type are proved, the main aim of this paper is to extend this results to product metric spaces, using Presiˇ c type operators. An existence, uniqueness and data dependence theorem related to the ´ solution of the system of integral equations of Fredholm type in product metric spaces, is also presented.



2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Xianbing Wu

It is well known that nonexpansive mappings do not always have fixed points for bounded sets in Banach space. The purpose of this paper is to establish fixed point theorems of nonexpansive mappings for bounded sets in Banach spaces. We study the existence of fixed points for nonexpansive mappings in bounded sets, and we present the iterative process to approximate fixed points. Some examples are given to support our results.



Sign in / Sign up

Export Citation Format

Share Document