How to Assess Different Algorithms Using Intuitionistic Fuzzy Logic
Intuitionistic fuzzy logic is the main tool in the recently developed step-wise “cross-evaluation” procedure that aims at the assessment of different optimization algorithms. In this investigation, the procedure previously applied to compare the effectiveness of two or three algorithms has been significantly upgraded to evaluate the performance of a set of four algorithms. For the first time, the procedure applied here has been tested in the evaluation of the effectiveness of genetic algorithms (GAs), which are proven as very promising and successful optimization techniques for solving hard non-linear optimization tasks. As a case study exemplified with the parameter identification of a S. cerevisiae fed-batch fermentation process model, the cross-evaluation procedure has been executed to compare four different types of GAs, and more specifically, multi-population genetic algorithms (MGAs), which differ in the order of application of the three genetic operators: Selection, crossover and mutation. The results obtained from the implementation of the upgraded intuitionistic fuzzy logic-based procedure for MGA performance assessment have been analyzed, and the standard MGA has been outlined as the fastest and most reliable one among the four investigated algorithms.