lusin area function
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 0)

H-INDEX

6
(FIVE YEARS 0)

2020 ◽  
Vol 32 (5) ◽  
pp. 1337-1373 ◽  
Author(s):  
Yixin Wang ◽  
Yu Liu ◽  
Chuanhong Sun ◽  
Pengtao Li

AbstractLet {\mathcal{L}=-{\Delta}_{\mathbb{G}}+V} be a Schrödinger operator on the stratified Lie group {\mathbb{G}}, where {{\Delta}_{\mathbb{G}}} is the sub-Laplacian and the nonnegative potential V belongs to the reverse Hölder class {B_{q_{0}}} with {q_{0}>\mathcal{Q}/2} and {\mathcal{Q}} is the homogeneous dimension of {\mathbb{G}}. In this article, by Campanato type spaces {\Lambda^{\alpha}_{\mathcal{L}}(\mathbb{G})}, we introduce Hardy type spaces associated with {\mathcal{L}} denoted by {H^{{p}}_{\vphantom{\varepsilon}{\mathcal{L}}}(\mathbb{G})} and prove the atomic characterization of {H^{{p}}_{\vphantom{\varepsilon}{\mathcal{L}}}(\mathbb{G})}. Further, we obtain the following duality relation:\Lambda_{\mathcal{L}}^{\mathcal{Q}(1/p-1)}(\mathbb{G})=(H^{{p}}_{\vphantom{% \varepsilon}{\mathcal{L}}}(\mathbb{G}))^{\ast},\quad\mathcal{Q}/(\mathcal{Q}+% \delta)<p<1\quad\text{for}\ \delta=\min\{1,2-\mathcal{Q}/q_{0}\}.The above relation enables us to characterize {\Lambda^{\alpha}_{\mathcal{L}}(\mathbb{G})} via two families of Carleson measures generated by the heat semigroup and the Poisson semigroup, respectively. Also, we obtain two classes of perturbation formulas associated with the semigroups related to {\mathcal{L}}. As applications, we obtain the boundedness of the Littlewood–Paley function and the Lusin area function on {\Lambda^{\alpha}_{\mathcal{L}}(\mathbb{G})}.



2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Khedoudj Saibi

The aim of this paper is to establish the intrinsic square function characterizations in terms of the intrinsic Littlewood–Paley g-function, the intrinsic Lusin area function, and the intrinsic gλ∗-function of the variable Hardy–Lorentz space Hp⋅,qℝn, for p⋅ being a measurable function on ℝn satisfying 0<p−≔ess infx∈ℝnpx≤ess supx∈ℝnpx≕p+<∞ and the globally log-Hölder continuity condition and q∈0,∞, via its atomic and Littlewood–Paley function characterizations.



2018 ◽  
Vol 20 (07) ◽  
pp. 1750077 ◽  
Author(s):  
Shuichi Sato ◽  
Fan Wang ◽  
Dachun Yang ◽  
Wen Yuan

In this paper, the authors characterize the Sobolev spaces [Formula: see text] with [Formula: see text] and [Formula: see text] via a generalized Lusin area function and its corresponding Littlewood–Paley [Formula: see text]-function. The range [Formula: see text] is also proved to be nearly sharp in the sense that these new characterizations are not true when [Formula: see text] and [Formula: see text]. Moreover, in the endpoint case [Formula: see text], the authors also obtain some weak type estimates. Since these generalized Littlewood–Paley functions are of wide generality, these results provide some new choices for introducing the notions of fractional Sobolev spaces on metric measure spaces.



2018 ◽  
Vol 148 (6) ◽  
pp. 1135-1163 ◽  
Author(s):  
Feng Dai ◽  
Jun Liu ◽  
Dachun Yang ◽  
Wen Yuan

By invoking some new ideas, we characterize Sobolev spaces Wα,p(ℝn) with the smoothness order α ∊ (0, 2] and p ∊ (max{1, 2n/(2α + n)},∞), via the Lusin area function and the Littlewood–Paley g*λ-function in terms of centred ball averages. We also show that the assumption p ∊ (max{1, 2n/(2α + n)},∞) is nearly sharp in the sense that these characterizations are no longer true when p ∊ (1, max{1, 2n/(2α + n)}). These characterizations provide a possible new way to introduce Sobolev spaces with smoothness order in (1, 2] on metric measure spaces.



2018 ◽  
Vol 237 ◽  
pp. 39-78
Author(s):  
BO LI ◽  
RUIRUI SUN ◽  
MINFENG LIAO ◽  
BAODE LI

Let $A$ be an expansive dilation on $\mathbb{R}^{n}$ and $\unicode[STIX]{x1D711}:\mathbb{R}^{n}\times [0,\infty )\rightarrow [0,\infty )$ an anisotropic growth function. In this article, the authors introduce the anisotropic weak Musielak–Orlicz Hardy space $\mathit{WH}_{A}^{\unicode[STIX]{x1D711}}(\mathbb{R}^{n})$ via the nontangential grand maximal function and then obtain its Littlewood–Paley characterizations in terms of the anisotropic Lusin-area function, $g$-function or $g_{\unicode[STIX]{x1D706}}^{\ast }$-function, respectively. All these characterizations for anisotropic weak Hardy spaces $\mathit{WH}_{A}^{p}(\mathbb{R}^{n})$ (namely, $\unicode[STIX]{x1D711}(x,t):=t^{p}$ for all $t\in [0,\infty )$ and $x\in \mathbb{R}^{n}$ with $p\in (0,1]$) are new. Moreover, the range of $\unicode[STIX]{x1D706}$ in the anisotropic $g_{\unicode[STIX]{x1D706}}^{\ast }$-function characterization of $\mathit{WH}_{A}^{\unicode[STIX]{x1D711}}(\mathbb{R}^{n})$ coincides with the best known range of the $g_{\unicode[STIX]{x1D706}}^{\ast }$-function characterization of classical Hardy space $H^{p}(\mathbb{R}^{n})$ or its weighted variants, where $p\in (0,1]$.



2016 ◽  
Vol 103 (2) ◽  
pp. 250-267 ◽  
Author(s):  
GUORONG HU

Let$(X,d,\unicode[STIX]{x1D707})$be a metric measure space endowed with a distance$d$and a nonnegative, Borel, doubling measure$\unicode[STIX]{x1D707}$. Let$L$be a nonnegative self-adjoint operator on$L^{2}(X)$. Assume that the (heat) kernel associated to the semigroup$e^{-tL}$satisfies a Gaussian upper bound. In this paper, we prove that for any$p\in (0,\infty )$and$w\in A_{\infty }$, the weighted Hardy space$H_{L,S,w}^{p}(X)$associated with$L$in terms of the Lusin (area) function and the weighted Hardy space$H_{L,G,w}^{p}(X)$associated with$L$in terms of the Littlewood–Paley function coincide and their norms are equivalent. This improves a recent result of Duonget al.[‘A Littlewood–Paley type decomposition and weighted Hardy spaces associated with operators’,J. Geom. Anal.26(2016), 1617–1646], who proved that$H_{L,S,w}^{p}(X)=H_{L,G,w}^{p}(X)$for$p\in (0,1]$and$w\in A_{\infty }$by imposing an extra assumption of a Moser-type boundedness condition on$L$. Our result is new even in the unweighted setting, that is, when$w\equiv 1$.



2016 ◽  
Vol 59 (01) ◽  
pp. 104-118 ◽  
Author(s):  
Ziyi He ◽  
Dachun Yang ◽  
Wen Yuan

Abstract In this paper, the authors characterize second-order Sobolev spaces W2,p(ℝn), with p ∊ [2,∞) and n ∊ N or p ∊ (1, 2) and n ∊ {1, 2, 3}, via the Lusin area function and the Littlewood–Paley g*λ -function in terms of ball means.



2013 ◽  
Vol 15 (06) ◽  
pp. 1350029 ◽  
Author(s):  
SHAOXIONG HOU ◽  
DACHUN YANG ◽  
SIBEI YANG

Let φ : ℝn× [0,∞) → [0,∞) be a growth function such that φ(x, ⋅) is nondecreasing, φ(x, 0) = 0, φ(x, t) > 0 when t > 0, limt→∞φ(x, t) = ∞, and φ(⋅, t) is a Muckenhoupt A∞(ℝn) weight uniformly in t. In this paper, the authors establish the Lusin area function and the molecular characterizations of the Musielak–Orlicz Hardy space Hφ(ℝn) introduced by Luong Dang Ky via the grand maximal function. As an application, the authors obtain the φ-Carleson measure characterization of the Musielak–Orlicz BMO-type space BMOφ(ℝn), which was proved to be the dual space of Hφ(ℝn) by Luong Dang Ky.



2013 ◽  
Vol 1 ◽  
pp. 69-129 ◽  
Author(s):  
The Anh Bui ◽  
Jun Cao ◽  
Luong Dang Ky ◽  
Dachun Yang ◽  
Sibei Yang

Abstract Let X be a metric space with doubling measure and L a one-to-one operator of type ω having a bounded H∞ -functional calculus in L2(X) satisfying the reinforced (pL; qL) off-diagonal estimates on balls, where pL ∊ [1; 2) and qL ∊ (2;∞]. Let φ : X × [0;∞) → [0;∞) be a function such that φ (x;·) is an Orlicz function, φ(·;t) ∊ A∞(X) (the class of uniformly Muckenhoupt weights), its uniformly critical upper type index l(φ) ∊ (0;1] and φ(·; t) satisfies the uniformly reverse Hölder inequality of order (qL/l(φ))′, where (qL/l(φ))′ denotes the conjugate exponent of qL/l(φ). In this paper, the authors introduce a Musielak-Orlicz-Hardy space Hφ;L(X), via the Lusin-area function associated with L, and establish its molecular characterization. In particular, when L is nonnegative self-adjoint and satisfies the Davies-Gaffney estimates, the atomic characterization of Hφ,L(X) is also obtained. Furthermore, a sufficient condition for the equivalence between Hφ,L(ℝn) and the classical Musielak-Orlicz-Hardy space Hv(ℝn) is given. Moreover, for the Musielak-Orlicz-Hardy space Hφ,L(ℝn) associated with the second order elliptic operator in divergence form on ℝn or the Schrödinger operator L := −Δ + V with 0 ≤ V ∊ L1loc(ℝn), the authors further obtain its several equivalent characterizations in terms of various non-tangential and radial maximal functions; finally, the authors show that the Riesz transform ∇L−1/2 is bounded from Hφ,L(ℝn) to the Musielak-Orlicz space Lφ(ℝn) when i(φ) ∊ (0; 1], from Hφ,L(ℝn) to Hφ(ℝn) when i(φ) ∊ (; 1], and from Hφ,L(ℝn) to the weak Musielak-Orlicz-Hardy space WHφ(ℝn) when i(φ)=is attainable and φ(·; t) ∊ A1(X), where i(φ) denotes the uniformly critical lower type index of φ



2011 ◽  
Vol 09 (03) ◽  
pp. 345-368 ◽  
Author(s):  
DACHUN YANG ◽  
DONGYONG YANG

Let λ > 0, p ∈ ((2λ + 1)/(2λ + 2), 1], and [Formula: see text] be the Bessel operator. In this paper, the authors establish the characterizations of atomic Hardy spaces Hp((0,∞),dmλ) associated with △λ in terms of the radial maximal function, the nontangential maximal function, the grand maximal function, the Littlewood–Paley g-function and the Lusin-area function, where dmλ(x) ≡ x2λ dx. As an application, the authors further obtain the Riesz transform characterization of these Hardy spaces.



Sign in / Sign up

Export Citation Format

Share Document