scholarly journals Analytic Matrix Method for Frequency Response Techniques Applied to Nonlinear Dynamical Systems I: Small and Medium Amplitude Oscillations

Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3287
Author(s):  
Elena Hernandez ◽  
Octavio Manero ◽  
Fernando Bautista ◽  
Juan Paulo Garcia-Sandoval

This is the first on a series of articles that deal with nonlinear dynamical systems under oscillatory input that may exhibit harmonic and non-harmonic frequencies and possibly complex behavior in the form of chaos. Frequency response techniques of nonlinear dynamical systems are usually analyzed with numerical methods because, most of the time, analytical solutions turn out to be difficult, if not impossible, since they are based on infinite series of trigonometric functions. The analytic matrix method reported here is a direct one that speeds up the solution processing compared to traditional series solution methods. In this method, we work with the invariant submanifold of the problem, and we propose a series solution that is equivalent to the harmonic balance series solution. However, the recursive relation obtained for the coefficients in our analytical method simplifies traditional approaches to obtain the solution with the harmonic balance series method. This method can be applied to nonlinear dynamic systems under oscillatory input to find the analog of a usual Bode plot where regions of small and medium amplitude oscillatory input are well described. We found that the identification of such regions requires both the amplitude as well as the frequency to be properly specified. In the second paper of the series, the method to solve problems in the field of large amplitudes will be addressed.

2005 ◽  
Vol 15 (10) ◽  
pp. 3165-3180 ◽  
Author(s):  
R. GENESIO ◽  
C. GHILARDI

The paper considers the existence of quasi-periodic solutions in three-dimensional systems. Since these solutions commonly arise as a consequence of a Neimark–Sacker bifurcation of a limit cycle, a fairly general relation connected to this phenomenon is pointed out as the main result of the paper. Then, the application of harmonic balance techniques makes possible to exploit such a relation. In particular, a simplified condition denoting the quasi-periodicity onset can be derived, in making evident the main elements for this transition in terms of structure and parameters, and hence some remarks on the features of the interested systems. Several examples show the application of the above condition to detect "tori" in the state space in a qualitative (not simply numerical) way. They consider classical systems — Rössler, where such behavior seems to be unknown, Chua, forced Van der Pol — and new quadratic systems.


2014 ◽  
Vol 24 (04) ◽  
pp. 1430013 ◽  
Author(s):  
Albert C. J. Luo

In this paper, the analytical methods for approximate solutions of periodic motions to chaos in nonlinear dynamical systems are reviewed. Briefly discussed are the traditional analytical methods including the Lagrange stand form, perturbation methods, and method of averaging. A brief literature survey of approximate methods in application is completed, and the weakness of current existing approximate methods is also discussed. Based on the generalized harmonic balance, the analytical solutions of periodic motions in nonlinear dynamical systems with/without time-delay are reviewed, and the analytical solutions for period-m motion to quasi-periodic motion are discussed. The analytical bifurcation trees of period-1 motion to chaos are presented as an application.


Sign in / Sign up

Export Citation Format

Share Document