scholarly journals An Integrated Intuitionistic Fuzzy Multi Criteria Decision Making Method for Facility Location Selection

2011 ◽  
Vol 16 (2) ◽  
pp. 487-496 ◽  
Author(s):  
Fatih Boran
2021 ◽  
Vol 13 ◽  
pp. 184797902110233
Author(s):  
Stefania Bait ◽  
Serena Marino Lauria ◽  
Massimiliano M. Schiraldi

The COVID-19 emergency is affecting manufacturing industries all over the world. Notably, it has generated several issues in the products’ supply and the global value chain in African countries. Besides this, Africa’s manufacturing value-added rate grew only 1.5 since 2018, and the foreign direct investment (FDI) from multinational enterprises (MNEs) remains very low due to high-risk factors. Most of these factors are linked to a non-optimized location selection that can adversely affect plant performance. For these reasons, supporting decision-makers in selecting the suitable country location in Africa is crucial, both for contributing to countries’ growth and companies’ performance. This research aims at presenting a comprehensive multi-criteria decision-making model (MCDM) to be used by MNEs to evaluate the best countries to develop new manufacturing settlements, highlighting the criteria that COVID-19 has impacted. Thus, it has affected countries’ performance, impacting the plant location selection choices. A combination of the Analytic Hierarchy Process (AHP) and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) methods have also been used for comparative analysis. The criteria used in the proposed approach have been validated with a panel of MNEs experts.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Fateme Omidvari ◽  
Mehdi Jahangiri ◽  
Reza Mehryar ◽  
Moslem Alimohammadlou ◽  
Mojtaba Kamalinia

Fire is one of the most dangerous phenomena causing major casualties and financial losses in hospitals and healthcare settings. In order to prevent and control the fire sources, first risk assessment should be conducted. Failure Mode and Effect Analysis (FMEA) is one of the techniques widely used for risk assessment. However, Risk Priority Number (RPN) in this technique does not take into account the weight of the risk parameters. In addition, indirect relationships between risk parameters and expert opinions are not considered in decision making in this method. The aim is to conduct fire risk assessment of healthcare setting using the application of FMEA combined with Multi‐Criteria Decision Making (MCDM) methods. First, a review of previous studies on fire risk assessment was conducted and existing rules were identified. Then, the factors influencing fire risk were classified according to FMEA criteria. In the next step, weights of fire risk criteria and subcriteria were determined using Intuitionistic Fuzzy Multiplicative Best-Worst Method (IFMBWM) and different wards of the hospital were ranked using Interval-Valued Intuitionistic Fuzzy Combinative Distance-based Assessment (IVIFCODAS) method. Finally, a case study was performed in one of the hospitals of Shiraz University of Medical Sciences. In this study, fire alarm system (0.4995), electrical equipment and installations (0.277), and flammable materials (0.1065) had the highest weight, respectively. The hospital powerhouse also had the highest fire risk, due to the lack of fire extinguishers, alarms and fire detection, facilities located in the basement floor, boilers and explosive sensitivity, insufficient access, and housekeeping. The use of MCDM methods in combination with the FMEA method assesses the risk of fire in hospitals and health centers with great accuracy.


Sign in / Sign up

Export Citation Format

Share Document