scholarly journals Identification and Heterologous Expression of the Kendomycin B Biosynthetic Gene Cluster from Verrucosispora sp. SCSIO 07399

Marine Drugs ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. 673
Author(s):  
Jiang Chen ◽  
Shanwen Zhang ◽  
Yingying Chen ◽  
Xinpeng Tian ◽  
Yucheng Gu ◽  
...  

Verrucosispora sp. SCSIO 07399, a rare marine-derived actinomycete, produces a set of ansamycin-like polyketides kendomycin B–D (1–3) which possess potent antibacterial activities and moderate tumor cytotoxicity. Structurally, kendomycin B–D contain a unique aliphatic macrocyclic ansa scaffold in which the highly substituted pyran ring is connected to the quinone moiety. In this work, a type I/type III polyketide synthase (PKS) hybrid biosynthetic gene cluster coding for assembly of kendomycin B (kmy), and covering 33 open reading frames, was identified from Verrucosispora sp. SCSIO 07399. The kmy cluster was found to be essential for kendomycin B biosynthesis as verified by gene disruption and heterologous expression. Correspondingly, a biosynthetic pathway was proposed based on bioinformatics, cluster alignments, and previous research. Additionally, the role of type III PKS for generating the precursor unit 3,5-dihydroxybenzoic acid (3,5-DHBA) was demonstrated by chemical complementation, and type I PKS executed the polyketide chain elongation. The kmy cluster was found to contain a positive regulatory gene kmy4 whose regulatory effect was identified using real-time quantitative PCR (RT-qPCR). These advances shed important new insights into kendomycin B biosynthesis and help to set the foundation for further research aimed at understanding and exploiting the carbacylic ansa scaffold.

2021 ◽  
Vol 10 (1) ◽  
pp. 37
Author(s):  
Sho Nishimura ◽  
Kazune Nakamura ◽  
Miyako Yamamoto ◽  
Daichi Morita ◽  
Teruo Kuroda ◽  
...  

Information on microbial genome sequences is a powerful resource for accessing natural products with significant activities. We herein report the unveiling of lucensomycin production by Streptomyces achromogenes subsp. streptozoticus NBRC14001 based on the genome sequence of the strain. The genome sequence of strain NBRC14001 revealed the presence of a type I polyketide synthase gene cluster with similarities to a biosynthetic gene cluster for natamycin, which is a polyene macrolide antibiotic that exhibits antifungal activity. Therefore, we investigated whether strain NBRC14001 produces antifungal compound(s) and revealed that an extract from the strain inhibited the growth of Candida albicans. A HPLC analysis of a purified compound exhibiting antifungal activity against C. albicans showed that the compound differed from natamycin. Based on HR-ESI-MS spectrometry and a PubChem database search, the compound was predicted to be lucensomycin, which is a tetraene macrolide antibiotic, and this prediction was supported by the results of a MS/MS analysis. Furthermore, the type I polyketide synthase gene cluster in strain NBRC14001 corresponded well to lucesomycin biosynthetic gene cluster (lcm) in S. cyanogenus, which was very recently reported. Therefore, we concluded that the antifungal compound produced by strain NBRC14001 is lucensomycin.


ChemBioChem ◽  
2010 ◽  
Vol 11 (9) ◽  
pp. 1245-1252 ◽  
Author(s):  
Ken Kasahara ◽  
Takanori Miyamoto ◽  
Takashi Fujimoto ◽  
Hiroki Oguri ◽  
Tetsuo Tokiwano ◽  
...  

ChemBioChem ◽  
2010 ◽  
Vol 11 (9) ◽  
pp. 1154-1154
Author(s):  
Ken Kasahara ◽  
Takanori Miyamoto ◽  
Takashi Fujimoto ◽  
Hiroki Oguri ◽  
Tetsuo Tokiwano ◽  
...  

Microbiology ◽  
2003 ◽  
Vol 149 (7) ◽  
pp. 1633-1645 ◽  
Author(s):  
Koji Ichinose ◽  
Makoto Ozawa ◽  
Keiko Itou ◽  
Kanako Kunieda ◽  
Yutaka Ebizuka

Medermycin is a Streptomyces aromatic C-glycoside antibiotic classified in the benzoisochromanequinones (BIQs), which presents several interesting biosynthetic problems concerning polyketide synthase (PKS), post-PKS tailoring and deoxysugar pathways. The biosynthetic gene cluster for medermycin (the med cluster) was cloned from Streptomyces sp. AM-7161. Completeness of the clone was proved by the heterologous expression of a cosmid carrying the entire med cluster in Streptomyces coelicolor CH999 to produce medermycin. The DNA sequence of the cosmid (36 202 bp) revealed 34 complete ORFs, with an incomplete ORF at either end. Functional assignment of the deduced products was made for PKS and biosynthetically related enzymes, tailoring steps including strereochemical control, oxidation, angolosamine pathway, C-glycosylation, and regulation. The med cluster was estimated to be about 30 kb long, covering 29 ORFs. An unusual characteristic of the cluster is the disconnected organization of the minimal PKS genes: med-ORF23 encoding the acyl carrier protein is 20 kb apart from med-ORF1 and med-ORF2 for the two ketosynthase components. Secondly, the six genes (med-ORF14, 15, 16, 17, 18 and 20) for the biosynthesis of the deoxysugar, angolosamine, are all contiguous. Finally, the finding of a glycosyltransferase gene, med-ORF8, suggests a possible involvement of conventional C-glycosylation in medermycin biosynthesis. Comparison among the three complete BIQ gene clusters – med and those for actinorhodin (act) and granaticin (gra) – revealed some common genes whose deduced functions are unavailable from database searches (the ‘unknowns’). An example is med-ORF5, a homologue of actVI-ORF3 and gra-ORF18, which was highlighted by a recent proteomic analysis of S. coelicolor A3(2).


2020 ◽  
Vol 48 (8) ◽  
pp. e48-e48 ◽  
Author(s):  
Peng Xu ◽  
Cyrus Modavi ◽  
Benjamin Demaree ◽  
Frederick Twigg ◽  
Benjamin Liang ◽  
...  

Abstract Microbial biosynthetic gene clusters are a valuable source of bioactive molecules. However, because they typically represent a small fraction of genomic material in most metagenomic samples, it remains challenging to deeply sequence them. We present an approach to isolate and sequence gene clusters in metagenomic samples using microfluidic automated plasmid library enrichment. Our approach provides deep coverage of the target gene cluster, facilitating reassembly. We demonstrate the approach by isolating and sequencing type I polyketide synthase gene clusters from an Antarctic soil metagenome. Our method promotes the discovery of functional-related genes and biosynthetic pathways.


2010 ◽  
Vol 54 (7) ◽  
pp. 2830-2839 ◽  
Author(s):  
Hoang Chuong Nguyen ◽  
Fatma Karray ◽  
Sylvie Lautru ◽  
Josette Gagnat ◽  
Ahmed Lebrihi ◽  
...  

ABSTRACT Streptomyces ambofaciens synthesizes spiramycin, a 16-membered macrolide antibiotic used in human medicine. The spiramycin molecule consists of a polyketide lactone ring (platenolide) synthesized by a type I polyketide synthase, to which three deoxyhexoses (mycaminose, forosamine, and mycarose) are attached successively in this order. These sugars are essential to the antibacterial activity of spiramycin. We previously identified four genes in the spiramycin biosynthetic gene cluster predicted to encode glycosyltransferases. We individually deleted each of these four genes and showed that three of them were required for spiramycin biosynthesis. The role of each of the three glycosyltransferases in spiramycin biosynthesis was determined by identifying the biosynthetic intermediates accumulated by the corresponding mutant strains. This led to the identification of the glycosyltransferase responsible for the attachment of each of the three sugars. Moreover, two genes encoding putative glycosyltransferase auxiliary proteins were also identified in the spiramycin biosynthetic gene cluster. When these two genes were deleted, one of them was found to be dispensable for spiramycin biosynthesis. However, analysis of the biosynthetic intermediates accumulated by mutant strains devoid of each of the auxiliary proteins (or of both of them), together with complementation experiments, revealed the interplay of glycosyltransferases with the auxiliary proteins. One of the auxiliary proteins interacted efficiently with the two glycosyltransferases transferring mycaminose and forosamine while the other auxiliary protein interacted only with the mycaminosyltransferase.


Sign in / Sign up

Export Citation Format

Share Document