scholarly journals Herpes Simplex Keratitis in Patients with SARS-CoV-2 Infection: A Series of Five Cases

Medicina ◽  
2021 ◽  
Vol 57 (5) ◽  
pp. 412
Author(s):  
Nora Majtanova ◽  
Petra Kriskova ◽  
Petra Keri ◽  
Zlatica Fellner ◽  
Juraj Majtan ◽  
...  

Herpes simplex virus type 1 (HSV-1) is a leading cause of infectious blindness worldwide. Most of the initial infection cases manifest as acute epithelial keratitis. Reactivation of herpesviruses is common in critically ill patients, including patients with severe Coronavirus disease (COVID-19). However, the data on COVID-19-related ocular infections is sparse, despite recent observations that more than 30% of COVID-19-infected patients had ocular manifestations. We report five cases of HSV-1 keratitis in COVID-19 patients. In total, five COVID-19 patients underwent ophthalmic examination, showing similar symptoms, including photophobia, tearing, decreased vision, eye redness, and pain. After initial assessment, tests of visual acuity and corneal sensitivity, a fluorescein staining test, and complete anterior and posterior segment examinations were performed. A diagnosis of HSV-1 keratitis was confirmed in all cases. Therapy was initiated using a local and systemic antiviral approach together with local antibiotic and mydriatic therapy. The complete reduction of keratitis symptoms and a clear cornea was achieved in all patients within 2 weeks. SARS-CoV-2 infection may be a risk factor for developing HSV-1 keratitis, or it may act as a potential activator of this ocular disease.

2007 ◽  
Vol 81 (18) ◽  
pp. 9653-9664 ◽  
Author(s):  
Satoko Iwahori ◽  
Noriko Shirata ◽  
Yasushi Kawaguchi ◽  
Sandra K. Weller ◽  
Yoshitaka Sato ◽  
...  

ABSTRACT The ataxia telangiectasia-mutated (ATM) protein, a member of the related phosphatidylinositol 3-like kinase family encoded by a gene responsible for the human genetic disorder ataxia telangiectasia, regulates cellular responses to DNA damage and viral infection. It has been previously reported that herpes simplex virus type 1 (HSV-1) infection induces activation of protein kinase activity of ATM and hyperphosphorylation of transcription factor, Sp1. We show that ATM is intimately involved in Sp1 hyperphosphorylation during HSV-1 infection rather than individual HSV-1-encoded protein kinases. In ATM-deficient cells or cells silenced for ATM expression by short hairpin RNA targeting, hyperphosphorylation of Sp1 was prevented even as HSV-1 infection progressed. Mutational analysis of putative ATM phosphorylation sites on Sp1 and immunoblot analysis with phosphopeptide-specific Sp1 antibodies clarified that at least Ser-56 and Ser-101 residues on Sp1 became phosphorylated upon HSV-1 infection. Serine-to-alanine mutations at both sites on Sp1 considerably abolished hyperphosphorylation of Sp1 upon infection. Although ATM phosphorylated Ser-101 but not Ser-56 on Sp1 in vitro, phosphorylation of Sp1 at both sites was not detected at all upon infection in ATM-deficient cells, suggesting that cellular kinase(s) activated by ATM could be involved in phosphorylation at Ser-56. Upon viral infection, Sp1-dependent transcription in ATM expression-silenced cells was almost the same as that in ATM-intact cells, suggesting that ATM-dependent phosphorylation of Sp1 might hardly affect its transcriptional activity during the HSV-1 infection. ATM-dependent Sp1 phosphorylation appears to be a global response to various DNA damage stress including viral DNA replication.


2002 ◽  
Vol 76 (18) ◽  
pp. 9232-9241 ◽  
Author(s):  
John M. Lubinski ◽  
Ming Jiang ◽  
Lauren Hook ◽  
Yueh Chang ◽  
Chad Sarver ◽  
...  

ABSTRACT Herpes simplex virus type 1 (HSV-1) encodes a complement-interacting glycoprotein, gC, and an immunoglobulin G (IgG) Fc binding glycoprotein, gE, that mediate immune evasion by affecting multiple aspects of innate and acquired immunity, including interfering with complement components C1q, C3, C5, and properdin and blocking antibody-dependent cellular cytotoxicity. Previous studies evaluated the individual contributions of gC and gE to immune evasion. Experiments in a murine model that examines the combined effects of gC and gE immune evasion on pathogenesis are now reported. Virulence of wild-type HSV-1 is compared with mutant viruses defective in gC-mediated C3 binding, gE-mediated IgG Fc binding, or both immune evasion activities. Eliminating both activities greatly increased susceptibility of HSV-1 to antibody and complement neutralization in vitro and markedly reduced virulence in vivo as measured by disease scores, virus titers, and mortality. Studies with C3 knockout mice indicated that other activities attributed to these glycoproteins, such as gC-mediated virus attachment to heparan sulfate or gE-mediated cell-to-cell spread, do not account for the reduced virulence of mutant viruses. The results support the importance of gC and gE immune evasion in vivo and suggest potential new targets for prevention and treatment of HSV disease.


2009 ◽  
Vol 84 (4) ◽  
pp. 2110-2121 ◽  
Author(s):  
Ken Sagou ◽  
Masashi Uema ◽  
Yasushi Kawaguchi

ABSTRACT Herpesvirus nucleocapsids assemble in the nucleus and must cross the nuclear membrane for final assembly and maturation to form infectious progeny virions in the cytoplasm. It has been proposed that nucleocapsids enter the perinuclear space by budding through the inner nuclear membrane, and these enveloped nucleocapsids then fuse with the outer nuclear membrane to enter the cytoplasm. Little is known about the mechanism(s) for nuclear egress of herpesvirus nucleocapsids and, in particular, which, if any, cellular proteins are involved in the nuclear egress pathway. UL12 is an alkaline nuclease encoded by herpes simplex virus type 1 (HSV-1) and has been suggested to be involved in viral DNA maturation and nuclear egress of nucleocapsids. Using a live-cell imaging system to study cells infected by a recombinant HSV-1 expressing UL12 fused to a fluorescent protein, we observed the previously unreported nucleolar localization of UL12 in live infected cells and, using coimmunoprecipitation analyses, showed that UL12 formed a complex with nucleolin, a nucleolus marker, in infected cells. Knockdown of nucleolin in HSV-1-infected cells reduced capsid accumulation, as well as the amount of viral DNA resistant to staphylococcal nuclease in the cytoplasm, which represented encapsidated viral DNA, but had little effect on these viral components in the nucleus. These results indicated that nucleolin is a cellular factor required for efficient nuclear egress of HSV-1 nucleocapsids in infected cells.


1979 ◽  
Vol 27 (11) ◽  
pp. 1455-1461 ◽  
Author(s):  
B L Hansen ◽  
G N Hansen ◽  
B F Vestergaard

Subcellular localization of viral antigens was demonstrated during viral morphogenesis using herpes simplex virus type 1 (HSV-1) infected monolayers of rabbit cornea cells. The localization was done by immunoelectron microscopy employing the peroxidase-antiperoxidase (PAP) immunocytochemical technique and the postembedding staining method. The localization of viral antigens was followed at time intervals during infection from 2 to 19 hr. After exposure of sections to either polyspecific antibodies against total HSV-1 antigens or monospecific antibodies against HSV-1 antigen No. 8, specific immunological reaction products were identified both in the cytoplasm and nucleus after 2 hr. The distribution and quantity of reaction products varied in the infected cells during the viral morphogenesis. The present results on the subcellular distribution of the HSV-1 antigens are related to current biochemical findings.


2004 ◽  
Vol 78 (9) ◽  
pp. 4599-4608 ◽  
Author(s):  
Nina Bacher Reuven ◽  
Susumu Antoku ◽  
Sandra K. Weller

ABSTRACT The herpes simplex virus type 1 (HSV-1) alkaline nuclease, encoded by the UL12 gene, plays an important role in HSV-1 replication, as a null mutant of UL12 displays a severe growth defect. Although the precise in vivo role of UL12 has not yet been determined, several in vitro activities have been identified for the protein, including endo- and exonuclease activities, interaction with the HSV-1 single-stranded DNA binding protein ICP8, and an ability to promote strand exchange in conjunction with ICP8. In this study, we examined a naturally occurring N-terminally truncated version of UL12 called UL12.5. Previous studies showing that UL12.5 exhibits nuclease activity but is unable to complement a UL12 null virus posed a dilemma and suggested that UL12.5 may lack a critical activity possessed by the full-length protein, UL12. We constructed a recombinant baculovirus capable of expressing UL12.5 and purified soluble UL12.5 from infected insect cells. The purified UL12.5 exhibited both endo- and exonuclease activities but was less active than UL12. Like UL12, UL12.5 could mediate strand exchange with ICP8 and could also be coimmunoprecipitated with ICP8. The primary difference between the two proteins was in their intracellular localization, with UL12 localizing to the nucleus and UL12.5 remaining in the cytoplasm. We mapped a nuclear localization signal to the N terminus of UL12, the domain absent from UL12.5. In addition, when UL12.5 was overexpressed so that some of the enzyme leaked into the nucleus, it was able to partially complement the UL12 null mutant.


2003 ◽  
Vol 77 (5) ◽  
pp. 3307-3311 ◽  
Author(s):  
Sarah M. Richart ◽  
Scott A. Simpson ◽  
Claude Krummenacher ◽  
J. Charles Whitbeck ◽  
Lewis I. Pizer ◽  
...  

ABSTRACT Primary cultures of rat and mouse sensory neurons were used to study the entry of herpes simplex virus type 1 (HSV-1). Soluble, truncated nectin-1 but not HveA prevented viral entry. Antibodies against nectin-1 also blocked infection of rat neurons. These results indicate that nectin-1 is the primary receptor for HSV-1 infection of sensory neurons.


2006 ◽  
Vol 80 (8) ◽  
pp. 4038-4046 ◽  
Author(s):  
Lauren M. Hook ◽  
John M. Lubinski ◽  
Ming Jiang ◽  
Michael K. Pangburn ◽  
Harvey M. Friedman

ABSTRACT Glycoprotein C (gC) of herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) binds complement component C3b and protects virus from complement-mediated neutralization. Differences in complement interacting domains exist between gC of HSV-1 (gC1) and HSV-2 (gC2), since the amino terminus of gC1 blocks complement C5 from binding to C3b, while gC2 fails to interfere with this activity. We previously reported that neutralization of HSV-1 gC-null virus by HSV antibody-negative human serum requires activation of C5 but not of downstream components of the classical complement pathway. In this report, we evaluated whether activation of C5 is sufficient to neutralize HSV-2 gC-null virus, or whether formation of the membrane attack complex by C6 to C9 is required for neutralization. We found that activation of the classical complement pathway up to C5 was sufficient to neutralize HSV-2 gC-null virus by HSV antibody-negative human serum. We evaluated the mechanisms by which complement activation occurred in seronegative human serum. Interestingly, natural immunoglobulin M antibodies bound to virus, which triggered activation of C1q and the classical complement pathway. HSV antibody-negative sera obtained from four individuals differed over an approximately 10-fold range in their potency for complement-mediated virus neutralization. These findings indicate that humans differ in the ability of their innate immune systems to neutralize HSV-1 or HSV-2 gC-null virus and that a critical function of gC1 and gC2 is to prevent C5 activation.


Sign in / Sign up

Export Citation Format

Share Document