scholarly journals Phase Equilibrium Diagram for Electric Arc Furnace Slag Optimization in High Alloyed Chromium Stainless Steelmaking

Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 826 ◽  
Author(s):  
Marcus Kirschen ◽  
In-Ho Jung ◽  
Gernot Hackl

The electric arc furnace (EAF) process for steelmaking of Cr and Ni high alloyed stainless steel grades differs significantly from the steelmaking process of carbon steel due to the special raw materials and generally lower oxygen consumption. The special slag chemistry in the EAF process affects slag foaming and refractory wear characteristics due to an increased content of CrOx. A special slag diagram is presented in order to improve monitoring and control of slag compositions for Cr alloyed heats, with special focus on saturation to MgO periclase and dicalcium silicate C2S in order to minimize MgO losses from the refractory lining and to improve slag refining capability by avoidance of stable C2S. With the same diagram different EAF process strategies can be efficiently monitored, either at elevated CaO and basicity with lower spinel concentration and more liquid process slags near C2S saturation or at lower CaO content and basicity with increased spinel concentration and stiffer slags at MgO saturation but certainly no C2S stability. Examples for three industrial EAFs are given.

2014 ◽  
Vol 1024 ◽  
pp. 235-238 ◽  
Author(s):  
Mohamad Hasmaliza ◽  
Anasyida Abu Seman ◽  
Wei Long Gan

Electric arc furnace slag (EAFS) is a solid waste from steel making industrial. Previously, EAFS was deposited, recycled or used as fertilizer. In present study, EAFS is used as one of the raw materials in ceramic tile production. EAFS added tiles samples have been prepared by mixing of EAFS with ball clay, quartz and feldspar. The feldspar content was varied at various weight percentages (0, 10 and 20 %) to observe their effect on the produced samples. The raw materials mixture was pressed and then sintered at temperature range 1100°C-1175°C for 1 hour. In general, results shows that, sample with higher content of feldspar require shorter vitrification range and having relatively higher density and good strength properties. In addition, MOR value was increasing as the sintering temperature was increasing. However when the temperature reached 1175°C, the MOR was dropped which may be due to the early vitrification of the compositions, resulting in over firing, grain growth and recrystallization. Whereas the density values are relatively higher than the conventional vitreous ceramic tiles due to the presence of high amount of iron oxide from the EAFS.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 782 ◽  
Author(s):  
Juan María Terrones-Saeta ◽  
Jorge Suárez-Macías ◽  
Evaristo Rafael Moreno-López ◽  
Francisco Antonio Corpas-Iglesias

Road construction is an activity that demands a significant amount of aggregates for bituminous mixtures. In addition, these aggregates must be of a suitable quality for use, even more so on high traffic roads. In response to this problem, and in order to avoid the extraction of new raw materials, research is being carried out using industrial waste as a substitute for conventional aggregates. In this way, the extraction of raw materials is reduced and landfilling of waste is avoided. However, these wastes must have certain properties and environmental advantages over natural aggregates. Otherwise, the use of waste would not be environmentally beneficial but would be more damaging to the environment. For this reason, this research evaluates the viability of using electric arc furnace slag as aggregates for bituminous mixtures, the main objectives being the determination of the characteristics of the by-product, the particularities and the critical points to be taken into account for its subsequent use in mixtures. At the same time, the environmental advantages of treating this waste to obtain a usable aggregate are evaluated in comparison with the processing of a natural aggregate. The results showed that electric arc furnace slags have a suitable chemical composition and excellent physical and mechanical properties for use in bituminous mixtures, even on high traffic roads. At the same time, it was determined that their use produces a considerable reduction in environmental afflictions. Therefore, it could be affirmed that the use of electric arc furnace slags in bituminous mixtures is recommendable as a way to develop more sustainable materials for construction.


Minerals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 872 ◽  
Author(s):  
Juan María Terrones-Saeta ◽  
Jorge Suárez-Macías ◽  
Francisco Javier Iglesias-Godino ◽  
Francisco Antonio Corpas-Iglesias

The construction of road infrastructure is one of the most polluting activities that exists today. Therefore, the use of waste from other industries is an excellent solution, since it reduces the consumption of raw materials, reduces CO2 emissions and avoids the disposal of waste in a landfill. In this study, electric arc furnace slag, cellulose fibers from the papermaking industry and bitumen emulsion were used for the conformation of sustainable and porous bituminous mixtures. Electric arc furnace slag was used as a high-resistance aggregate with a capacity sufficient to support traffic loads. Cellulose fibers were added to increase the percentage of binder in the mixture without bleeding problems, thereby achieving greater tensile strength. To do this, first the waste was physically and chemically characterized, then different mixtures were conformed and finally the mixtures were studied by means of the loss by wear and Marshall tests. The results reflected an optimal combination of materials that provided the best results in the mechanical tests, obtaining much better results than the mixtures with discontinuous grading and traditional bitumen emulsion. Therefore, a sustainable, porous and economical mixture for road use is obtained in this research.


2022 ◽  
Vol 316 ◽  
pp. 125553
Author(s):  
Aratz Garcia-Llona ◽  
Vanesa Ortega-Lopez ◽  
Ignacio Piñero ◽  
Amaia Santamaría ◽  
Miquel Aguirre

Sign in / Sign up

Export Citation Format

Share Document