scholarly journals Enhancement of the Al/Mg Dissimilar Friction Stir Welding Joint Strength with the Assistance of Ultrasonic Vibration

Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1113
Author(s):  
Yinghao Bai ◽  
Hao Su ◽  
Chuansong Wu

The assistance of ultrasonic vibration during the friction stir welding (FSW) process has been verified as an effective approach for the improvement of joint strength. In the present study, experimentation on Al/Mg dissimilar alloys in butt joint configuration is implemented by employing FSW with and without the assistance of ultrasonic vibration. An optimized tool shoulder diameter of 12 mm is utilized, and the ultrasonic vibration is applied perpendicularly onto the tool along the welding direction, which is named UVaFSW. The results of joint appearance and macrostructure, characteristics of the intermetallic compounds (IMCs), as well as joint strength and fracture appearance are compared between Al/Mg FSW joints with and without ultrasonic vibration. It is demonstrated that the material intermixing between Al and Mg alloys is substantially strengthened in the UVaFSW joint compared with that in the FSW joint. Additionally, the ultrasonic vibration can be beneficial for the reduction of IMC thickness, as well as the formation of intermittently distributed IMC phases at the Al–Mg bonding interface. Consequently, the mechanical properties of Al/Mg FSW joints are significantly improved with the assistance of ultrasonic vibration. The maximum ultimate tensile strength is 206 MPa at tool rotation speed of 800 rpm and welding speed of 50 mm/min for the Al/Mg UVaFSW joint.

2014 ◽  
Vol 984-985 ◽  
pp. 586-591 ◽  
Author(s):  
R. Ashok Kumar ◽  
M.R. Thansekhar

— For fabricating light weight structures, it requires high strength-to weight ratio. AA6061 aluminium alloy is widely used in the fabrication of light weight structures. A356 aluminium alloy has wide spread application in aerospace industries. Friction stir welding is solid state joining process which is conducting for joining similar and dissimilar materials. The friction stir welding parameters play an important role for deciding the strength of welded joints. In this investigation, A356 and AA6061 alloys were friction stir welded by varying triangular, square, hexagonal pin profiles of tool keeping the remaining parameters same and AA6061 alloys were friction stir welded by varying tool shoulder diameter as 12mm,15mm,18mm without changing other parameters. Tensile properties of each joint have been analyzed microscopically. From the experimental results, it is observed that hexagonal pin profiled tool and 15mm shoulder diameter tool provides higher tensile properties when compared to other tools.


2021 ◽  
Vol 36 (1) ◽  
pp. 94-102
Author(s):  
M. M. Z. Ahmed ◽  
A. Elnaml ◽  
M. Shazly ◽  
M. M. El-Sayed Seleman

Abstract In this work, top surface lubrication during friction stir welding of polycarbonate sheets was applied. A homogenous layer of Paraffin wax has been placed on the top surface of the joint area with a width that ensures to cover the shoulder diameter. Then FSW was applied using conventional FSW tool with rotating pin and shoulder at different FSW parameters (Rotation speeds of 1 000, 1500, 2 000 min–1 and welding speeds of 25, 50, 75,100 mm/min). The main objective of using the wax is to act as a lubricant that reduces the friction between the shoulder and the polycarbonate surface. The joints produced were investigated in terms of surface quality, internal defects, and mechanical properties. During FSW the wax is melted and played as lubricant between the tool shoulder and the polycarbonate surface and resulted in defect-free surface with no thickness reduction of the original plate. The transverse cross-section showed defect-free joints for the majority of the FSW parameters investigated. Tensile testing results showed a reduction of the tensile strength after FSW, and an enhancement in the tensile strength with the increase of welding speed or rotation speed. The fracture occurs at the joint zone and the fracture surface investigation using SEM showed the existence of spherulitic structure in the weld joint.


Author(s):  
Nasir Khan ◽  
Sandeep Rathee ◽  
Manu Srivastav

Al-Mg-Si alloys have wide applications in industries such as aerospace, marine, automobile, construction. In this work, newly developed friction stir welding (FSW) was utilized for joining of AA6082-T6 alloy. The effect of major FSW process variables like rotational speed, traverse speed, and shoulder diameter of tool is studied over microstructural and mechanical characteristics of friction stir welded (FSWed) joints. Experimental design was done using Taguchi method (L9 orthogonal array). Three factors viz. rotational speed, welding speed, and diameter of tool shoulder were taken at three levels each. Mathematical modelling was developed in order to optimize the tensile strength of weld joints. Analysis of variance (ANOVA) was utilized to determine the percentage contribution of input variables. The results of present study exhibits that shoulder diameter, rotation, and welding speed of tool significantly affect the mechanical strength of FSWed joints.


Sign in / Sign up

Export Citation Format

Share Document