scholarly journals Large Eddy Simulation of Multi-Phase Flow and Slag Entrapment in a Continuous Casting Mold

Metals ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 7 ◽  
Author(s):  
Xianglong Li ◽  
Baokuan Li ◽  
Zhongqiu Liu ◽  
Ran Niu ◽  
Yanqiang Liu ◽  
...  

A transient, three-dimensional mathematical model has been developed to study the slag entrapment in a continuous casting mold. The unsteady turbulent flow is computed using the large eddy simulation (LES). The sub-grid scale structure is modeled by the Smagorinsky–Lilly model. The movements of discrete bubbles, as well as three continuous phases (air–slag–steel), are described by solving the coupled discrete particle model and volume of fraction (DPM+VOF) approach. The bubble transport inside different phases (steel and slag) and the escape near the air–slag interface are well studied. Good agreement is obtained by comparing with the plant observation of the slag eyes on the top surface of the mold. Three main mechanisms of slag entrapment are identified; vortex formation, shear-layer instability, and meniscus fluctuation. Four stages are observed for a slag entrapment: deformation, necking, breaking, and dragging in the mold. The model is helpful for understanding the formation of slag entrapment during continuous casting.

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 374
Author(s):  
Xianjiu Zhao ◽  
Xianglong Li ◽  
Jieyu Zhang

Slag entrapment is a critical problem that affects the quality of steel. In this work, a three-dimensional model is established to simulate the slag entrapment phenomenon, mainly focusing on the slag entrapment phenomenon at the interface between slag and steel in molds with different widths. The large eddy simulation (LES) model and discrete particle model (DPM) are used to simulate the movements of bubbles. The interactions between phases involve two-way coupling. The accuracy of our mathematical model is validated by comparing slag–metal interface fluctuations with practical measurements. The results reveal that the average interface velocity and transverse velocity decrease as the mold width increases, however, they cannot represent the severity of slag entrapment at the interface between slag and steel. Due to the influence of bubble motion behavior, the maximum interface velocity increases with mold width and causes slag entrapment readily, which can reflect the severity of slag entrapment. On this basis, by monitoring the change of impact depths in different molds, a new dimensionless number “C” is found to reveal the severity of slag entrapment at the interface between slag and steel. The results show that the criterion number C increases with mold width, which is consistent with the results of flaw detection. Therefore, criterion number C can be used to reflect the severity of slag entrapment in different molds.


Author(s):  
Chuang Jin ◽  
Giovanni Coco ◽  
Rafael O. Tinoco ◽  
Pallav Ranjan ◽  
Jorge San Juan ◽  
...  

2018 ◽  
Author(s):  
Jiajun Chen ◽  
Yue Sun ◽  
Hang Zhang ◽  
Dakui Feng ◽  
Zhiguo Zhang

Mixing in pipe junctions can play an important role in exciting force and distribution of flow in pipe network. This paper investigated the cross pipe junction and proposed an improved plan, Y-shaped pipe junction. The numerical study of a three-dimensional pipe junction was performed for calculation and improved understanding of flow feature in pipe. The filtered Navier–Stokes equations were used to perform the large-eddy simulation of the unsteady incompressible flow in pipe. From the analysis of these results, it clearly appears that the vortex strength and velocity non-uniformity of centerline, can be reduced by Y-shaped junction. The Y-shaped junction not only has better flow characteristic, but also reduces head loss and exciting force. The results of the three-dimensional improvement analysis of junction can be used in the design of pipe network for industry.


Sign in / Sign up

Export Citation Format

Share Document