interface velocity
Recently Published Documents


TOTAL DOCUMENTS

135
(FIVE YEARS 21)

H-INDEX

16
(FIVE YEARS 1)

Author(s):  
Gilles Demange ◽  
Renaud Patte ◽  
Helena Zapolsky

The present work is devoted to the phenomenon of induced side branching stemming from the disruption of free dendrite growth. We postulate that the secondary branching instability can be triggered by the departure of the morphology of the dendrite from its steady state shape. Thence, the instability results from the thermodynamic trade-off between non monotonic variations of interface temperature, surface energy, kinetic anisotropy and interface velocity within the Gibbs–Thomson equation. For the purposes of illustration, the toy model of capillary anisotropy modulation is prospected both analytically and numerically by means of phase-field simulations. It is evidenced that side branching can befall both smooth and faceted dendrites, at a normal angle from the front tip which is specific to the nature of the capillary anisotropy shift applied. This article is part of the theme issue ‘Transport phenomena in complex systems (part 2)’.


2021 ◽  
Vol 933 ◽  
Author(s):  
Cyril Bozonnet ◽  
Jean-Philippe Matas ◽  
Guillaume Balarac ◽  
Olivier Desjardins

The shear instability occurring at the interface between a slow water layer and a fast air stream is a complex phenomenon driven by momentum and viscosity differences across the interface, velocity gradients as well as by injector geometries. Simulating such an instability under experimental conditions is numerically challenging and few studies exist in the literature. This work aims at filling a part of this gap by presenting a study of the convergence between two-dimensional simulations, linear theory and experiments, in regimes where the instability is triggered by the confinement, i.e. finite thicknesses of gas and liquid streams. It is found that very good agreement between the three approaches is obtained. Moreover, using simulations and linear theory, we explore in detail the effects of confinement on the stability of the flow and on the transition between absolute and convective instability regimes, which is shown to depend on the length scale of the confinement as well as on the dynamic pressure ratio. In the absolute regime under study, the interfacial wave frequency is found to be inversely proportional to the smallest injector size (liquid or gas).


2021 ◽  
Vol 71 (5) ◽  
pp. 612-618
Author(s):  
S. Harikrishnan ◽  
V. Venkateswara Rao ◽  
Ajay Misra

Numerical simulations have been performed to examine the effect of three different eroding rod materials on the penetration in concrete targets. Same kinetic energy is delivered to concrete target using cylindrical rods of Aluminium, Iron, and Copper of identical size. Impact velocities have been varied to keep the kinetic energy the same. Penetration characteristics like centerline interface velocity, penetrator deceleration, plastic strain in the target, and energy partitioning during penetration have been studied for the three different penetrator materials. In all three cases, penetration proceeds nearly hydrodynamically. It is seen that even though the steady-state penetration ceases before reaching the hydrodynamic limit, the secondary penetration takes the total penetration beyond the hydrodynamic value. Plastic strain in the target material is a measure of damage beyond the crater produced by penetration. The lateral extent of plastic strain in target is more for Aluminium penetrator compared to the other two. Energy partitioning during penetration provides details of the rate at which energy is entering into the target. Kinetic energy delivered to the target during impact is partitioned into internal energy and kinetic energy of the target. Finally, the influence of target thickness on the extent of plastic strain has been studied. The result shows that Aluminium penetrators inflict maximum damage to targets of finite thickness.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1217
Author(s):  
Abhishek Kumar Patel ◽  
Alexandre Duguay ◽  
Bernard Tougas ◽  
Bettina Neumann ◽  
Chris Schade ◽  
...  

In this paper, we report the effect of adding Zr + V or Zr + V + Mn to TiFe alloy on microstructure and hydrogen storage properties. The addition of only V was not enough to produce a minimum amount of secondary phase and, therefore, the first hydrogenation at room temperature under a hydrogen pressure of 20 bars was impossible. When 2 wt.% Zr + 2 wt.% V or 2 wt.% Zr + 2 wt.% V + 2 wt.% Mn is added to TiFe, the alloy shows a finely distributed Ti2Fe-like secondary phase. These alloys presented a fast first hydrogenation and a high capacity. The rate-limiting step was found to be 3D growth, diffusion controlled with decreasing interface velocity. This is consistent with the hypothesis that the fast reaction is likely to be the presence of Ti2Fe-like secondary phases that act as a gateway for hydrogen.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 374
Author(s):  
Xianjiu Zhao ◽  
Xianglong Li ◽  
Jieyu Zhang

Slag entrapment is a critical problem that affects the quality of steel. In this work, a three-dimensional model is established to simulate the slag entrapment phenomenon, mainly focusing on the slag entrapment phenomenon at the interface between slag and steel in molds with different widths. The large eddy simulation (LES) model and discrete particle model (DPM) are used to simulate the movements of bubbles. The interactions between phases involve two-way coupling. The accuracy of our mathematical model is validated by comparing slag–metal interface fluctuations with practical measurements. The results reveal that the average interface velocity and transverse velocity decrease as the mold width increases, however, they cannot represent the severity of slag entrapment at the interface between slag and steel. Due to the influence of bubble motion behavior, the maximum interface velocity increases with mold width and causes slag entrapment readily, which can reflect the severity of slag entrapment. On this basis, by monitoring the change of impact depths in different molds, a new dimensionless number “C” is found to reveal the severity of slag entrapment at the interface between slag and steel. The results show that the criterion number C increases with mold width, which is consistent with the results of flaw detection. Therefore, criterion number C can be used to reflect the severity of slag entrapment in different molds.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 306
Author(s):  
Kazuya Taira ◽  
Tomonori Waku ◽  
Yoshimichi Hagiwara

The control of ice growth inside channels of aqueous solution flows is important in numerous fields, including (a) cold-energy transportation plants and (b) the preservation of supercooled human organs for transplantation. A promising method for this control is to add a substance that influences ice growth in the flows. However, limited results have been reported on the effects of such additives. Using a microscope, we measured the growth of ice from one sidewall toward the opposite sidewall of a mini-channel, where aqueous solutions of sodium chloride and antifreeze protein flowed. Our aim was to considerably suppress ice growth by mixing the two solutes. Inclined interfaces, the overlapping of serrated interfaces, and interfaces with sharp and flat tips were observed in the cases of the protein-solution, salt-solution, and mixed-solution flows, respectively. In addition, it was found that the average interface velocity in the case of the mixed-solution flow was the lowest and decreased by 64% compared with that of pure water. This significant suppression of the ice-layer growth can be attributed to the synergistic effects of the ions and antifreeze protein on the diffusion of protein.


Author(s):  
Harish Singh Dhami ◽  
Koushik Viswanathan

Abstract Grinding swarf is conventionally of secondary interest to the process engineer. However, it has long been recognized that it is a useful indicator of process performance — the exact particle morphologies occurring in the swarf contain a wealth of information about the abrasive-workpiece interaction mechanics. In this work, we study the generation of perfectly spherical particles when grinding two plain carbon steels and a grade of stainless steel with an alumina wheel. Similar particles have also been reported in the wear community and several possible formation mechanisms have been discussed including chip curl resulting from electronic charge distributions; melting due to local flash temperatures in the grinding zone; and repeated abrasive wear of the workpiece surface. We postulate that the particles are likely formed as a result of an oxidation-melting-solidification route with small grinding chips. We present spectroscopy and X-ray diffraction data in support of this hypothesis — significant oxygen content, in the form of Fe3O4 was detected on the surface of the spheres. Electron micrographs also show remarkably robust dendrite-like structures on the surface of the particles, indicative of rapid solidification from the melt. Motivated by these results, we present model calculations to support our hypothesis. We first evaluate the initial temperature of chips exiting the grinding zone using a three-way heat partition model for dry grinding. An upper bound for the chip temperature is ∼ 600°C, well-below the melting point for the metal. Next, we show that the oxidation kinetics at this elevated temperature are such that the formation of a thin oxide layer (∼ 2μm) on the surface of an initially curled up chip, with size ∼ 50 μm comparable to the observed spheres, is enough to melt the entire chip on a timescale of 10−6 seconds. Surface tension then brings the molten chip into a perfectly spherical shape, followed by rapid solidification. We present a preliminary calculation of this solidification process, using a coupled heat conduction model along with a moving interphase interface. By making suitable approximations, we derive an ordinary differential equation describing the temporal evolution of the interface location. Coupling the interface velocity with a Mullins-Sekerka type instability analysis, we argue that solidification of these drops likely starts from a nucleated core in the drop interior, resulting in dendrite-type patterns on the outer surface. Our work is a preliminary attempt to put decades old observations of grinding swarf on a firm quantitative footing. The experimental evidence and related analysis presented here make a strong case for the oxidation-melting-solidification hypothesis for the formation of spherical particles in grinding swarf.


Author(s):  
A. L. K. Rawlings ◽  
A. J. Birnbaum ◽  
J. G. Michopoulos ◽  
J. C. Steuben ◽  
A. P. Iliopoulos ◽  
...  

Abstract The formation of sub-grain cellular structures generated during the rapid solidification associated with selective laser melting (SLM) typically yields enhanced mechanical properties in terms of yield stress without considerable loss in ductility when compared with those of wrought material. The extent to which the sub-grain structure appears under standard metallographic preparation shows dependence on multiple systematic conditions. This study identifies the effects of solidification and cooling rate on the grain and sub-grain structure in stainless steel through varying the processing parameters (laser power, scan velocity and spot size) of single tracks on both as-received, small grain and annealed, giant grain substrates. The process parameters, in conjunction with the initial substrate microstructure, are key components in understanding the resulting microstructure. Process parameters, particularly scan velocity, dictate the solidification rate and primary regrowth directions while the initial microstructure and its thermomechanical history dictate the propensity for stored strain energy density. Modeling the thermal process allows for experimental analysis within the context of predicted location within processing space as it pertains to local interface velocity and temperature gradient. Furthermore, it highlights the fact that this specific material system behaves in a manner that is inconsistent with classical solidification theory.


2020 ◽  
Vol 10 (16) ◽  
pp. 5463
Author(s):  
Xiaohang Qu ◽  
Qianjian Guo ◽  
Yi Zhang ◽  
Xiaoni Qi ◽  
Lei Liu

A multiphase flow measurement technique plays a critical role in the studies of heat and mass transfer characteristics and mechanism of the gas–liquid two-phase, the practical measurement of the gas–liquid flow and the improvement of multiphase theoretical models. The four-sensor electrical probe as an emerging measurement method has been proved to be able to get the local flow parameters of multi-dimensional two-phase flow. However, few studies have been reported using the four-sensor probe to obtain the interface information (e.g., the interface direction and velocity). This paper presents a new signal processing method by which the interface direction and velocity can be obtained, besides void fraction, interfacial area concentration (IAC) and bubble chord length. The key solution is to employ the vector-based calculating method, which possesses the merits of simplicity and efficiency, to gain the interface velocity vector through legitimately assuming a direction of the interface velocity. A miniaturized four-sensor electrical probe was made and a gas–liquid two-phase flow experiment was performed to test the proposed signal process scheme. The two-phase flow was controlled to be in cap-bubble flow regime. To validate the availability and reliability of the proposed method, the local flow parameters obtained by the probe measurement were compared with the results from visual measurement technique in the same flow conditions. The comparison indicates that the above local flow parameters from four-sensor probe measurement are in good agreement with the visual measurement results, with maximum deviations of chord length of 8.7%, thereby proving the correctness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document