scholarly journals Adaptive Fuzzy Sliding Mode Control for a Micro Gyroscope with Backstepping Controller

Micromachines ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 968 ◽  
Author(s):  
Juntao Fei ◽  
Yunmei Fang ◽  
Zhuli Yuan

This paper developed an adaptive backstepping fuzzy sliding control (ABFSC) approach for a micro gyroscope. Based on backstepping design, an adaptive fuzzy sliding mode control was proposed to adjust the fuzzy parameters with self-learning ability and reject the system nonlinearities. With the Lyapunov function analysis of error function and sliding surface function, a comprehensive controller is derived to ensure the stability of the proposed control system. The proposed fuzzy control scheme does not need to know the system model in advance and could approximate the system nonlinearities well. The adaptive fuzzy control method has self-learning ability to adjust the fuzzy parameters. Simulation studies were implemented to prove the validity of the proposed ABFSMC strategy, showing that it can adapt to the changes of external disturbance and model parameters and has a satisfactory performance in tracking and approximation.

Author(s):  
Juntao Fei ◽  
Mingyuan Xin

In this paper, an adaptive fuzzy sliding mode control strategy, which combines the merits of sliding mode control and adaptive fuzzy control, is proposed to control the MEMS gyroscope in the presence of model uncertainties and external disturbances. The adaptive fuzzy systems are employed to approximate both the equivalent control term and the sliding mode controller. Then the switching control becomes continuous and the chattering phenomena can be attenuated. The adaptation laws based on the Lyapunov analysis can adaptively adjust the fuzzy rules to guarantee the asymptotical stability of the adaptive fuzzy closed-loop control system. Numerical simulations are investigated to verify the effectiveness of the proposed adaptive fuzzy control schemes.


Sign in / Sign up

Export Citation Format

Share Document