scholarly journals Comprehensive Hydrodynamic Investigation of Zebrafish Tail Beats in a Microfluidic Device with a Shape Memory Alloy

Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 68
Author(s):  
Satishkumar Subendran ◽  
Chun-Wei Kang ◽  
Chia-Yuan Chen

The zebrafish is acknowledged as a reliable species of choices for biomechanical-related investigations. The definite quantification of the hydrodynamic flow physics caused by behavioral patterns, particularly in the zebrafish tail beat, is critical for a comprehensive understanding of food toxicity in this species, and it can be further interpreted for possible human responses. The zebrafish’s body size and swimming speed place it in the intermediate flow regime, where both viscous and inertial forces play significant roles in the fluid–structure interaction. This pilot work highlighted the design and development of a novel microfluidic device coupled with a shape memory alloy (SMA) actuator to immobilize the zebrafish within the observation region for hydrodynamic quantification of the tail-beating behavioral responses, which may be induced by the overdose of food additive exposure. This study significantly examined behavioral patterns of the zebrafish in early developmental stages, which, in turn, generated vortex circulation. The presented findings on the behavioral responses of the zebrafish through the hydrodynamic analysis provided a golden protocol to assess the zebrafish as an animal model for new drug discovery and development.

Author(s):  
J. P. Revel

Movement of individual cells or of cell sheets and complex patterns of folding play a prominent role in the early developmental stages of the embryo. Our understanding of these processes is based on three- dimensional reconstructions laboriously prepared from serial sections, and from autoradiographic and other studies. Many concepts have also evolved from extrapolation of investigations of cell movement carried out in vitro. The scanning electron microscope now allows us to examine some of these events in situ. It is possible to prepare dissections of embryos and even of tissues of adult animals which reveal existing relationships between various structures more readily than used to be possible vithout an SEM.


2003 ◽  
Vol 112 ◽  
pp. 519-522 ◽  
Author(s):  
W. Cai ◽  
J. X. Zhang ◽  
Y. F. Zheng ◽  
L. C. Zhao

2017 ◽  
Vol 186 (1) ◽  
pp. 103-112
Author(s):  
Lukáš Laibl ◽  
Oldřich Fatka

This contribution briefly summarizes the history of research, modes of preservation and stratigraphic distribution of 51 trilobite and five agnostid taxa from the Barrandian area, for which the early developmental stages have been described.


Author(s):  
Ricardo Alexandre Amar de Aguiar ◽  
Pedro Manuel Calas Lopes Pacheco ◽  
Brenno Tavares Duarte

Author(s):  
Marcelio Ronnie Dantas de Sá ◽  
Armando Wilmans Nunes da Fonseca Júnior ◽  
Yuri Moraes ◽  
Antonio Almeida Silva

Sign in / Sign up

Export Citation Format

Share Document