scholarly journals Nanoresonator Enhancement of Majorana-Fermion-Induced Slow Light in Superconducting Iron Chains

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1435
Author(s):  
Huajun Chen

We theoretically investigate Fano resonance in the absorption spectrum of a quantum dot (QD) based on a hybrid QD-nanomechanical resonator (QD–NR) system mediated by Majorana fermions (MFs) in superconducting iron (Fe) chains. The absorption spectra exhibit a series of asymmetric Fano line shapes, which are accompanied by the rapid normal phase dispersion and induce the optical propagation properties such as the slow light effect under suitable parametric regimes. The results indicated that the slow light induced by MFs can be obtained under different coupling regimes and different detuning regimes. Moreover, we also investigated the role of the NR, and the NR behaving as a phonon cavity enhances the slow light effect.

2021 ◽  
Author(s):  
Hua-Jun Chen

Abstract We propose a hybrid nanomechanical resonator (NR) system, where a NR coupled to an embedded quantum dot (QD) driven by two-tone fields is also coupled to another NR via the Coulomb interaction, and investigate the absorption spectra of the probe field under both the condition of resonance and off-resonance. The absorption spectra in resonance presents a means to determine the coupling strength of the two NRs. In the off-resonance, the absorption spectra can exhibit double Fano resonance, and the positions of the double Fano resonances are related to the interaction of the two NRs, the frequencies of the NRs, and the pump detuning. Furthermore, the double Fano resonances are accompanied by the rapid normal phase dispersion, which indicates the slow- and fast-light effect. We can obtain that the group velocity index is tunable by the interaction between the two NRs, the detuning, and the different resonator frequencies, which can reach the conversion from the fast light to slow light.


2012 ◽  
Vol 51 (5) ◽  
pp. 568 ◽  
Author(s):  
F. Hosseinibalam ◽  
S. Hassanzadeh ◽  
A. Ebnali-Heidari ◽  
C. Karnutsch

Entropy ◽  
2018 ◽  
Vol 20 (7) ◽  
pp. 541 ◽  
Author(s):  
Venkata Kota ◽  
Narendra Chavda

Embedded ensembles or random matrix ensembles generated by k-body interactions acting in many-particle spaces are now well established to be paradigmatic models for many-body chaos and thermalization in isolated finite quantum (fermion or boson) systems. In this article, briefly discussed are (i) various embedded ensembles with Lie algebraic symmetries for fermion and boson systems and their extensions (for Majorana fermions, with point group symmetries etc.); (ii) results generated by these ensembles for various aspects of chaos, thermalization and statistical relaxation, including the role of q-hermite polynomials in k-body ensembles; and (iii) analyses of numerical and experimental data for level fluctuations for trapped boson systems and results for statistical relaxation and decoherence in these systems with close relations to results from embedded ensembles.


2018 ◽  
Vol 52 (2) ◽  
pp. 025104 ◽  
Author(s):  
Hui Xu ◽  
Mingzhuo Zhao ◽  
Mingfei Zheng ◽  
Cuixiu Xiong ◽  
Baihui Zhang ◽  
...  

2014 ◽  
Vol 926-930 ◽  
pp. 415-418
Author(s):  
Yong Wan ◽  
Yue Guo ◽  
Jing Gao ◽  
Ming Hui Jia

Crescent scatterers possess the properties of anisotropy and multiple degrees of freedom. With plane-wave expansion method (PWE), the slow light effect with high ngand low dispersion can be achieved by optimizing the structure parameters of photonic crystal waveguide with line defect, such as changing the radius of two circles and center distance. Slow light with low dispersion can be obtained by these methods, which implies that choosing suitable scatterers and adjusting their parameters can efficiently achieve slow light with high ng and low dispersion.


1999 ◽  
Author(s):  
Cetin Cetinkaya ◽  
Chen Li

Abstract Including the second sound effect, a transfer matrix formulation based on the generalized dynamical theory of thermoelasticity is developed for longitudinal wave component propagation in a thermoelastic layer. The attenuation and propagation properties of one-dimensional thermoelastic wave in both continuum and layered structures are studied using this formulation and the periodic systems framework. Localization of thermal waves is demonstrated in the time-spacial domain by an FFT-based transient analysis. A perturbation analysis tor identifying leading terms in thermal attenuation is performed, and the role of the thermal elastic coupling term in attenuation is determined. The reflection and transmission coefficients between half-spaces are calculated to evaluate the potential practical use of the approach in laser-based nondestructive testing.


Sign in / Sign up

Export Citation Format

Share Document