coupled resonator
Recently Published Documents


TOTAL DOCUMENTS

863
(FIVE YEARS 82)

H-INDEX

47
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Shayan Mookherjee

The band-edge localization of light in a coupled resonator optical waveguide (CROW) consisting of silicon microring resonators is studied theoretically and experimentally. Summary of a Project Outcomes report of research funded by the National Science Foundation under Project Number 0925133.


2021 ◽  
Author(s):  
Maciej Jasinski ◽  
Martyna Mul ◽  
Adam Lamecki ◽  
Roberto Gomez-Garcia ◽  
Michal Mrozowski

2021 ◽  
Author(s):  
Joel S. Demetre ◽  
Tom J. Smy ◽  
Shulabh Gupta

<div>A static metasurface reflector based on a novel coupled resonator configuration is proposed to independently control</div><div>the reflection phase and magnitude of linearly polarized incident fields, and is demonstrated experimentally in the millimeter-wave Ka-band around 30 GHz. The proposed concept is illustrated using a unit cell design consisting of a rectangular ring coupled with a rectangular slot resonator backed by a grounded dielectric slab. By geometrically tuning various dimensions of the two resonators, a near-perfect amplitude-phase coverage is achieved at a fixed design frequency of 30 GHz. To demonstrate the flexible beam-forming capability of the proposed metasurface reflectors, illustrative examples of fixed beam steering with varying reflection magnitudes, and asymmetric dual-beam patterns with specified reflection magnitude, reflection angles and beam-widths, are successfully shown. Compared to the standard method based on polarization rotation and resistive loadings with discrete values, the proposed technique does not generate undesired cross-polarization field reflection, and provides a continuous magnitude tuning including full absorption, along with wide phase coverage.</div>


2021 ◽  
Author(s):  
Joel S. Demetre ◽  
Tom J. Smy ◽  
Shulabh Gupta

<div>A static metasurface reflector based on a novel coupled resonator configuration is proposed to independently control</div><div>the reflection phase and magnitude of linearly polarized incident fields, and is demonstrated experimentally in the millimeter-wave Ka-band around 30 GHz. The proposed concept is illustrated using a unit cell design consisting of a rectangular ring coupled with a rectangular slot resonator backed by a grounded dielectric slab. By geometrically tuning various dimensions of the two resonators, a near-perfect amplitude-phase coverage is achieved at a fixed design frequency of 30 GHz. To demonstrate the flexible beam-forming capability of the proposed metasurface reflectors, illustrative examples of fixed beam steering with varying reflection magnitudes, and asymmetric dual-beam patterns with specified reflection magnitude, reflection angles and beam-widths, are successfully shown. Compared to the standard method based on polarization rotation and resistive loadings with discrete values, the proposed technique does not generate undesired cross-polarization field reflection, and provides a continuous magnitude tuning including full absorption, along with wide phase coverage.</div>


Author(s):  
Michelle L. Povinelli ◽  
Ahmed M. Morsy ◽  
Romil Audhkhasi
Keyword(s):  

2021 ◽  
Author(s):  
Shayan Mookherjee

The research outcomes of this NSF-funded project include the realization of long silicon coupled-resonator optical waveguides and a study of their optical transmission and localization properties.


Sign in / Sign up

Export Citation Format

Share Document