scholarly journals Inhibiting Methanogenesis in Rumen Batch Cultures Did Not Increase the Recovery of Metabolic Hydrogen in Microbial Amino Acids

2019 ◽  
Vol 7 (5) ◽  
pp. 115 ◽  
Author(s):  
Emilio M. Ungerfeld ◽  
M. Fernanda Aedo ◽  
Emilio D. Martínez ◽  
Marcelo Saldivia

There is an interest in controlling rumen methanogenesis as an opportunity to both decrease the emissions of greenhouse gases and improve the energy efficiency of rumen fermentation. However, the effects of inhibiting rumen methanogenesis on fermentation are incompletely understood even in in vitro rumen cultures, as the recovery of metabolic hydrogen ([H]) in the main fermentation products consistently decreases with methanogenesis inhibition, evidencing the existence of unaccounted [H] sinks. We hypothesized that inhibiting methanogenesis in rumen batch cultures would redirect [H] towards microbial amino acids (AA) biosynthesis as an alternative [H] sink to methane (CH4). The objective of this experiment was to evaluate the effects of eight inhibitors of methanogenesis on digestion, fermentation and the production of microbial biomass and AA in rumen batch cultures growing on cellulose. Changes in the microbial community composition were also studied using denaturing gradient gel electrophoresis (DGGE). Inhibiting methanogenesis did not cause consistent changes in fermentation or the profile of AA, although the effects caused by the different inhibitors generally associated with the changes in the microbial community that they induced. Under the conditions of this experiment, inhibiting methanogenesis did not increase the importance of microbial AA synthesis as a [H] sink.

2012 ◽  
Vol 58 (9) ◽  
pp. 1135-1151 ◽  
Author(s):  
P.G. Medihala ◽  
J.R. Lawrence ◽  
G.D.W. Swerhone ◽  
D.R. Korber

Relatively little is known regarding the spatial variability of microbial communities in aquifers where well fouling is an issue. In this study 2 water wells were installed in an alluvial aquifer located adjacent to the North Saskatchewan River and an associated piezometer network developed to facilitate the study of microbial community structure, richness, and diversity. Carbon utilization data analysis revealed reduced microbial activity in waters collected close to the wells. Functional PCR and quantitative PCR analysis indicated spatial variability in the potential for iron-, sulphate-, and nitrate-reducing activity at all locations in the aquifer. Denaturing gradient gel electrophoresis analysis of aquifer water samples using principal components analyses indicated that the microbial community composition was spatially variable, and denaturing gradient gel electrophoresis sequence analysis revealed that bacteria belonging to the genera Acidovorax , Rhodobacter , and Sulfuricurvum were common throughout the aquifer. Shannon’s richness (H′) and Pielou’s evenness (J′) indices revealed a varied microbial diversity (H′ = 1.488–2.274) and an even distribution of microbial communities within the aquifer (J′ = 0.811–0.917). Overall, these analyses revealed that the aquifer’s microbial community varied spatially in terms of composition, richness, and metabolic activity. Such information may facilitate the diagnosis, prevention, and management of fouling.


2001 ◽  
Vol 43 (1) ◽  
pp. 77-82 ◽  
Author(s):  
O.-C. Chan ◽  
W.-T. Liu ◽  
H. H. Fang

The microbial community structure of granular sludge from an upflow anaerobic sludge blanket (UASB) reactor treating brewery effluent was studied by denaturing gradient gel electrophoresis (DGGE). Twelve major bands were observed in the DGGE fingerprint for the Bacteria domain and four bands for the Archaea domain. Of the bacterial bands observed, six were successfully purified and sequenced. Among them, three were related to the gram-positive low G+C group, one to the Delta subclass of the Proteobacteria, one to the Gamma subclass, and one to the Cytophaga group with no close related sequence. The 16S rRNA sequences of the four archaeal bands were closely associated with Methanosaeta concilii and Methanobacterium formicum.


2014 ◽  
Vol 71 (2) ◽  
pp. 277-282 ◽  
Author(s):  
J. E. Pérez-Alfaro ◽  
G. González-Blanco ◽  
E. Sierra-Palacios ◽  
J. Marcial-Quino ◽  
R. Beristain-Cardoso

The metabolic and kinetic behavior of a nitrifying sludge exposed to 2-chlorophenol (2-CP) was evaluated in batch cultures. Two kinds of nitrifying culture were used; one acclimated to 4-methylphenol (4-mp), and the other unacclimated to 4-mp. The unacclimated culture was affected adversely by the 2-CP's presence, since neither nitrification nor 2-CP oxidation was observed. Nonetheless, the acclimated culture showed metabolic capacity to nitrify and mineralize 2-CP. Ammonium removal was 100%, with a nitrifying yield of 0.92 ± 0.04 mg NO3−-N/mg NH4+-N consumed. The consumption efficiency for 2-CP was 100% and the halogenated compound was mineralized to CO2. Denaturing gradient gel electrophoresis (DGGE) patterns showed the shift in microbial community structure, indicating that microbial diversity was due to the acclimation process. This is the first evidence where nitrifying culture acclimated to 4-mp completely removed ammonium and 2-CP.


2010 ◽  
Vol 76 (22) ◽  
pp. 7451-7458 ◽  
Author(s):  
Yao Pan ◽  
Levente Bodrossy ◽  
Peter Frenzel ◽  
Anne-Grethe Hestnes ◽  
Sascha Krause ◽  
...  

ABSTRACT With the advent of molecular biological techniques, especially next-generation sequencing and metagenomics, the number of microbial biogeography studies is rapidly increasing. However, these studies involve the synthesis of data generated by different laboratories using different protocols, chemicals, etc., all with inherent biases. The aim of this study was to assess inter- as well as intralaboratory variations in microbial community composition when standardized protocols are applied to a single soil sample. Aliquots from a homogenized soil sample from a rice field in Italy were sent to five participating laboratories. DNA was extracted by two investigators per laboratory using an identical protocol. All DNA samples were sent to one laboratory to perform DNA quantification, quantitative PCR (QPCR), and microarray and denaturing gradient gel electrophoresis (DGGE) analyses of methanotrophic communities. Yields, as well as purity of DNA, were significantly different between laboratories but in some cases also between investigators within the same laboratory. The differences in yield and quality of the extracted DNA were reflected in QPCR, microarray, and DGGE analysis results. Diversity indices (Shannon-Wiener, evenness, and richness) differed significantly between laboratories. The observed differences have implications for every project in which microbial communities are compared in different habitats, even if assessed within the same laboratory. To be able to make sensible comparisons leading to valid conclusions, intralaboratory variation should be assessed. Standardization of DNA extraction protocols and possible use of internal standards in interlaboratory comparisons may help in rendering a “quantifiable” bias.


Sign in / Sign up

Export Citation Format

Share Document