scholarly journals Application of Dirichlet Process and Support Vector Machine Techniques for Mapping Alteration Zones Associated with Porphyry Copper Deposit Using ASTER Remote Sensing Imagery

Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1235
Author(s):  
Mastoureh Yousefi ◽  
Seyed Hasan Tabatabaei ◽  
Reyhaneh Rikhtehgaran ◽  
Amin Beiranvand Pour ◽  
Biswajeet Pradhan

The application of machine learning (ML) algorithms for processing remote sensing data is momentous, particularly for mapping hydrothermal alteration zones associated with porphyry copper deposits. The unsupervised Dirichlet Process (DP) and the supervised Support Vector Machine (SVM) techniques can be executed for mapping hydrothermal alteration zones associated with porphyry copper deposits. The main objective of this investigation is to practice an algorithm that can accurately model the best training data as input for supervised methods such as SVM. For this purpose, the Zefreh porphyry copper deposit located in the Urumieh-Dokhtar Magmatic Arc (UDMA) of central Iran was selected and used as training data. Initially, using ASTER data, different alteration zones of the Zefreh porphyry copper deposit were detected by Band Ratio, Relative Band Depth (RBD), Linear Spectral Unmixing (LSU), Spectral Feature Fitting (SFF), and Orthogonal Subspace Projection (OSP) techniques. Then, using the DP method, the exact extent of each alteration was determined. Finally, the detected alterations were used as training data to identify similar alteration zones in full scene of ASTER using SVM and Spectral Angle Mapper (SAM) methods. Several high potential zones were identified in the study area. Field surveys and laboratory analysis were used to validate the image processing results. This investigation demonstrates that the application of the SVM algorithm for mapping hydrothermal alteration zones associated with porphyry copper deposits is broadly applicable to ASTER data and can be used for prospectivity mapping in many metallogenic provinces around the world.

2017 ◽  
Vol 112 (7) ◽  
pp. 1653-1672 ◽  
Author(s):  
Anne Schöpa ◽  
Catherine Annen ◽  
John H. Dilles ◽  
R. Stephen J. Sparks ◽  
Jon D. Blundy

Abstract Many porphyry copper deposits are associated with granitoid plutons. Porphyry copper deposit genesis is commonly attributed to degassing of pluton-forming intermediate to silicic magma chambers during slow cooling and crystallization. We use numerical simulations of thermal evolution during pluton growth to investigate the links between pluton construction, magma accumulation and solidification, volatile release, and porphyry copper deposit formation. The Jurassic Yerington batholith, Nevada, serves as a case study because of its exceptional exposure, revealing the geometry of three main intrusions. The last intrusion, the Luhr Hill granite, is associated with economic porphyry copper deposits localized over cupolas where dikes and fluid flow were focused. Our simulations for the conceptual model linking porphyry copper deposits with the presence of large, highly molten magma chambers show that the Luhr Hill granite must have been emplaced at a vertical thickening rate of several cm/yr or more. This magma emplacement rate is much higher than the time-averaged formation rates of other batholiths reported in the literature. Such low rates, although common, do not lead to magma accumulation and might be one of the reasons why many granitoid plutons are barren. Based on our results, we formulate the new testable hypothesis of a link between porphyry copper deposit formation and the emplacement time scale of the associated magma intrusion.


SEG Discovery ◽  
2016 ◽  
pp. 1-20
Author(s):  
Richard H. Sillitoe ◽  
Claudio Burgoa ◽  
David R. Hopper

ABSTRACT Exploration for porphyry copper deposits beneath barren or poorly mineralized, advanced argillic lithocaps is becoming common­place; however, there have been few discoveries except in cases where the copper ± gold ± molybdenum mineralization has been partly exposed, typically as a result of partial lithocap erosion. At Valeriano, in the high Andes of northern Chile, completely concealed Miocene porphyry copper-gold mineralization was recently discovered beneath a lithocap. Here, the results of the staged drilling program that led to the discovery are summarized, with emphasis on the key geologic, alteration, and mineralization features that provided guidance. The final deep drill holes of the 16-hole program cut well-defined advanced argillic and sericitic alteration zones before entering chalcopyrite ± bornite–bearing, potassic-altered porphyry, with grades of 0.7 to 1.2% Cu equiv, at depths of ~1,000 to >1,800 m.


Sign in / Sign up

Export Citation Format

Share Document