scholarly journals Explosives Use in Decommissioning—Guide for Assessment of Risk (EDGAR): I Determination of Sound Pressure Levels for Open Water Blasts and Severance of Conductors and Piles from Below the Seabed

Modelling ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 514-533 ◽  
Author(s):  
Alison M. Brand

A simple underwater noise model suitable for use with explosives in the decommissioning of oil and gas subsea structures is introduced and evaluated against data from five projects in the US. The performance of the model is compared to four existing models for open water blasts, and for the severance of well conductors and piles. Simulated received underwater sound pressure levels were significantly correlated with measurements for all scenarios. The maximum total error achieved between simulations and measurements was 3.5%, suggesting that predictions are accurate to within 4% of the average measurement. A low relative bias was observed in the simulations when compared to measured values, suggesting only a small systematic underestimate (≤1% of average measurement) for most severance operations and a small overestimate (1.34%) for open water blasts.

Author(s):  
Alison M. Brand

A simple underwater noise model suitable for use with explosives in the decommissioning of oil and gas subsea structures is introduced and evaluated against data from five projects in the US. The performance of the model is compared to four existing models for open water blasts, and for the severance of well conductors and piles. Simulated received underwater sound pressure levels were significantly correlated with measurements for all scenarios. The maximum total error achieved between simulations and measurements was 3.5%, suggesting that predictions are accurate to within 4% of the average measurement. A low relative bias was observed in the simulations when compared to measured values, suggesting only a small systematic underestimate (≤ 1% of average measurement) for most severance operations and a small overestimate (1.34%) for open water blasts.


Author(s):  
Alison Brand

A simple underwater noise model suitable for use with explosive severance of well conductors and piles during the decommissioning of oil and gas subsea structures is introduced and evaluated against data from five projects in the US. This study focuses on a novel model for the determination of sound exposure levels. The model has been developed to enable determination of impact areas for marine mammals and fish. Simulated received underwater sound exposure levels were significantly correlated with measurements for all scenarios. The maximum total error achieved between simulations and measurements was 2.6%, suggesting that predictions are accurate to within 3% of the average measurement. A low relative bias was observed in the simulations when compared to measured values, suggesting only a small systematic underestimate (≤ 0.5% of average measurement) for most severance operations and a small overestimate (0.14%) for open water blasts.


2013 ◽  
Vol 135 (06) ◽  
pp. 32-35
Author(s):  
Michael Bahtiarian

This article focuses on various research efforts that are being undertaken to address underwater noise. One of the U.S. National Oceanographic and Atmospheric Administration (NOAA)’s findings is that underwater sound has been doubling every 10 years. Most of this sound is man-made, from the ever expanding fleet of ships that ride our oceans. Researchers believe that intrusive sound is harming sea life. Many organizations around the US shipbuilding industry have seen the need to address underwater noise. Standards organizations such as International Organization for Standardization (ISO), American National Standards Institute (ANSI), and the Acoustical Society of America have been working overtime to develop standards for the measurement of underwater noise from ships, oil and gas exploration, pile driving, and other sources. The ship classification societies are adding underwater noise to their library of regulations. In the United States, the Society of Naval Architects and Marine Engineers are planning to add their own regulations or guidelines in the near future.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2687
Author(s):  
Shu Liu ◽  
Qi Li ◽  
Dajing Shang ◽  
Rui Tang ◽  
Qingming Zhang

Underwater noise produced by rainfall is an important component of underwater ambient noise. For example, the existence of rainfall noise causes strong disturbances to sonar performance. The underwater noise produced by a single raindrop is the basis of rainfall noise. Therefore, it is necessary to study the associated underwater noise when drops strike the water surface. Previous research focused primarily on the sound pressure and frequency spectrum of underwater noise from single raindrops, but the study on its sound energy is insufficient. The purpose of this paper is to propose a method for predicting the acoustic energy generated by raindrops of any diameter. Here, a formula was derived to calculate the underwater sound energy radiated by single raindrops based on a dipole radiation pattern. A series of experiments were conducted to measure the underwater sound energy in a 15 m × 9 m × 6 m reverberation tank filled with tap water. The analysis of the acoustic energy characteristics and conversion efficiency from kinetic to acoustic energy helped develop the model to predict the average underwater sound energy radiated by single raindrops. Using this model, the total underwater sound energy of all raindrops during a rainfall event can be predicted based on the drop size distribution.


2011 ◽  
Vol 51 (1) ◽  
pp. 467
Author(s):  
Dick Petersen ◽  
Antoine David ◽  
Darren Jurevicius

The oil and gas industry uses some exploration and production technologies that produce high levels of underwater sound, such as seismic surveys, underwater blasting for demolition and construction, and offshore piling. These underwater noise sources have the potential to impact marine species, which are usually reliant on sound instead of light as their primary sense for communication and sensing their environment. Regulatory interest in minimising the impacts of underwater noise on marine fauna is increasing. This paper presents a methodology for assessing these environmental impacts, with particular focus on cetaceans (whales and dolphins) and pinnipeds (seals and sea lions), although it can easily be adapted to other marine mammal species and fishes. It requires input from a variety of fields, such as: underwater acoustics for sound propagation modelling and source noise characterisation; marine bio-acoustics for determining the effects of sound on marine species’ hearing and communication; and marine ecology for identifying the marine species that may be affected and assessing the biological importance of noise-affected marine areas. These inputs are used in a risk assessment to assess the likely impacts of underwater noise on marine species, which is a collaborative effort by specialists in the fields of underwater acoustics, marine bio-acoustics and marine ecology.


Sign in / Sign up

Export Citation Format

Share Document